PHYC 467: Methods of Theoretical Physics II

Spring 2016

Final Exam

Date and Time: 05/11/2016, 10:00-13:00

Instructions:

- This is an open-book, open-note exam. All reference material allowed.
- The exam consists of three problems, which are equally weighted.

1- The two-dimensional spinors ψ_L and ψ_R belong to the (1/2,0) and (0,1/2) representations of the SO(3,1) group respectively. Show that $\psi_R^{\dagger}\psi_L, \psi_L^{\dagger}\psi_R$ bilinears behave scalars and $\psi_L^{\dagger}\sigma^{\mu}\psi_L, \psi_R^{\dagger}\bar{\sigma}^{\mu}\psi_R$ behave are four-vectors under the group transformations. Here $\sigma^{\mu} = (1,\sigma^i)$ and $\bar{\sigma}^{\mu} = (1,-\sigma^i)$, where σ^i are Pauli matrices.

[Hint: You may use elements of the SO(3,1) group in the (1/2,0) and (0,1/2) representations, $\Lambda_{\rm L}$ and $\lambda_{\rm R}$ respectively, to find how the above bilinears are transformed under (infinitesimal) rotations and boosts.]

2- A quantum system consists of N identical bosons each of which can be at either of the two levels 1 and 2 with energies E_1 and E_2 respectively ($E_1 < E_2$). Determine all possible energy eigenvalues of this system. Obtain the probability function P(E) for the system to have energy E at temperature T, and claculate the mean and variance of its energy as a function of T. Find the energy mean and variance in the high temperature $kT \gg E_2 - E_1$ and low temperature $kT \ll E_2 - E_1$ limits, and comment.

[Hint: You may use the Maxwell-Boltzmann distribution $P(E) \propto \exp(-E/kT)$ for the probability to occupy a state with energy E at temperature T.]

3- Positive sample values x_i (i = 1, ..., N) are drawn independently from the distribution $P(x|\lambda) = \lambda \exp(-\lambda x)$. Find the maximum likelihood estimate of the parameter λ , denoted by $\hat{\lambda}_{\text{ML}}$, and calculate its mean $E[\hat{\lambda}_{\text{ML}}]$ and variance $V[\hat{\lambda}_{\text{ML}}]$. Show that the maximum likelihood estimator is neither unbiased nor the most efficient.

[Hint: You may compare $V[\hat{\lambda}_{ML}]$ with the lower bound in Fisher's inequaltiy.]