PHYC 467: Methods of Theoretical Physics II

Spring 2016
Homework Assignment \#1

(Due February 2, 2016)

1- Show that a second-order Cartesian tensor $T_{i j}$ can be decompsed into three tensors,

$$
T_{i j}=I_{i j}+S_{i j}+A_{i j}
$$

where $I_{i j}$ is isotropic, $S_{i j}$ is a traceless symmertric tensor, and $A_{i j}$ is an antisymmetric tensor. Show that these tensors do not mix under an arbitrary change of basis.

2- Consider a third-order Cartesian tensor $T_{i j k}$. Find totally symmetric $S_{i j k}$ and totally antisymmetric $A_{i j k}$ tensors obtained from symmetrization and antisymmetrization of the components of $T_{i j k}$ respectively. Write all components of these tensors explicitly. Can $T_{i j k}$ be decomposed into a totally symmetric and a totally antisymmetric tensors in general? Explain.

3- A rigid body consists of four particles of masses $m, 2 m, 3 m, 4 m$ that are situated at the points $(a, a, a),(a,-a,-a),(-a, a,-a)(-a,-a, a)$ respectively. What is the moment of inertia tensor of this system? Find the principal moments and the principal axes of inertia.

4- In a certain system of units, the electromagnetic the electromagnetic stress tensor $M_{i j}$ is given by

$$
M_{i j}=E_{i} E_{j}+B_{i} B_{j}-\frac{1}{2} \delta_{i j}\left(E_{k} E_{k}+B_{k} B_{k}\right) .
$$

Knowing that \vec{E} and \vec{B} are vectors, show that $M_{i j}$ is a second-order tensor. Show that $\vec{E} \pm \vec{B}$ are eigenvecotrs of the stress tensor if $|\vec{E}|=|\vec{B}|$, and find the corresponding eigenvalues.

