
PHYC 467: Methods of Theoretical Physics II

Spring 2016

Homework Assignment #2

(Due February 16, 2016)

1- Show that if vi are covariant components of a vector, then vi,j − vj,i is a second-order
tensor under general coordinate transformations. We now contract this tensor with the Levi-
Civita symbol εijk to find ui = −εijk(vj,k − vk,j)/2

√
g. How do ui behave under a general

coordinate transformation? Does this object look familiar? Comment.

2- Show that Christoffel symbols (of the second kind) Γi
kj satisfy the following relation:

Γi
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1
√
g

∂
√
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∂uk
,

where g is the determinat of the metric tensor. Use this and show that the divergence of a
vecotr field ~v can be expressed as follows:

vi;i =
1
√
g
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(
√
gvj) .

Specializing to spherical coordinates, verify that this expression gives the familiar result for
the divergence of a vecotr in spherical coordinates.
Hint: You may use the fact that g =

∑
j gij∆

ij (where ∆ij denotes the cofactor of the element
gij and summation is performed over j only), and the relation between gij and ∆ij , to first
show that:
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.

3- Defining the second covarinat derivative of a vecotr vi as vi;jk ≡ (vi;j);k, show that:

vi;jk − vi;kj ≡ Rl
ijkvl ,

where
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are the components of the Riemann curvature tensor. Verify thatRl
ijk is indeed a tensor under

general coordinate transformations. Use this to show that in three-dimensional Euclidean
space all components of the Riemann tensor identically vanish for any coordinate system.
Hint: You may use the definition of the Chrsitoffel symbols Γk

ij ≡ ~ek · ∂~ei/∂uj to find how
they are transformed under a change of coordinates:
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4- One may define Christoffel symbols of the first kind by Γijk = gilΓ
l
jk. Verify that:

Γijk + Γjik =
∂gij
∂uk

,

and use this to show that the covariant derivative of the metric tensor identiucally vanishes,
i.e., gij;k = 0.


