PHYC 467: Methods of Theoretical Physics II

Spring 2016

Homework Assignment \#2

(Due February 16, 2016)

1- Show that if v_{i} are covariant components of a vector, then $v_{i, j}-v_{j, i}$ is a second-order tensor under general coordinate transformations. We now contract this tensor with the LeviCivita symbol $\epsilon^{i j k}$ to find $u^{i}=-\epsilon^{i j k}\left(v_{j, k}-v_{k, j}\right) / 2 \sqrt{g}$. How do u^{i} behave under a general coordinate transformation? Does this object look familiar? Comment.

2- Show that Christoffel symbols (of the second kind) $\Gamma^{i}{ }_{k j}$ satisfy the following relation:

$$
\Gamma^{i}{ }_{k i}=\frac{1}{\sqrt{g}} \frac{\partial \sqrt{g}}{\partial u^{k}}
$$

where g is the determinat of the metric tensor. Use this and show that the divergence of a vecotr field \vec{v} can be expressed as follows:

$$
v_{; i}^{i}=\frac{1}{\sqrt{g}} \frac{\partial}{\partial u^{j}}\left(\sqrt{g} v^{j}\right) .
$$

Specializing to spherical coordinates, verify that this expression gives the familiar result for the divergence of a vecotr in spherical coordinates.
Hint: You may use the fact that $g=\sum_{j} g_{i j} \Delta^{i j}$ (where $\Delta^{i j}$ denotes the cofactor of the element $g_{i j}$ and summation is performed over j only), and the relation between $g^{i j}$ and $\Delta^{i j}$, to first show that:

$$
\frac{\partial g}{\partial u^{k}}=g g^{i j} \frac{\partial g_{i j}}{\partial u^{k}}
$$

3- Defining the second covarinat derivative of a vecotr v_{i} as $v_{i ; j k} \equiv\left(v_{i ; j}\right)_{; k}$, show that:

$$
v_{i ; j k}-v_{i ; k j} \equiv R_{i j k}^{l} v_{l}
$$

where

$$
R_{i j k}^{l}=\frac{\partial \Gamma^{l}{ }_{i k}}{\partial u^{j}}-\frac{\partial \Gamma^{l}{ }_{i j}}{\partial u^{k}}+\Gamma^{m}{ }_{i k} \Gamma^{l}{ }_{m j}-\Gamma^{m}{ }_{i j} \Gamma^{l}{ }_{m k},
$$

are the components of the Riemann curvature tensor. Verify that $R^{l}{ }_{i j k}$ is indeed a tensor under general coordinate transformations. Use this to show that in three-dimensional Euclidean space all components of the Riemann tensor identically vanish for any coordinate system.
Hint: You may use the definition of the Chrsitoffel symbols $\Gamma^{k}{ }_{i j} \equiv \vec{e}^{k} \cdot \partial \vec{e}_{i} / \partial u^{j}$ to find how they are transformed under a change of coordinates:

$$
\Gamma^{\prime k}{ }_{i j}=\frac{\partial u^{\prime k}}{\partial u^{l}} \frac{\partial^{2} u^{l}}{\partial u^{\prime} j \partial u^{\prime i}}+\frac{\partial u^{\prime k}}{\partial u^{n}} \frac{\partial u^{l}}{\partial u^{\prime i}} \frac{\partial u^{m}}{\partial u^{\prime j}} \Gamma^{n}{ }_{l m} .
$$

4- One may define Christoffel symbols of the first kind by $\Gamma_{i j k}=g_{i l} \Gamma^{l}{ }_{j k}$. Verify that:

$$
\Gamma_{i j k}+\Gamma_{j i k}=\frac{\partial g_{i j}}{\partial u^{k}}
$$

and use this to show that the covariant derivative of the metric tensor identiucally vanishes, i.e., $g_{i j ; k}=0$.

