PHYC 467: Methods of Theoretical Physics 11
Spring 2016

Homework Assignment #2

(Due February 16, 2016)

1- Show that if v; are covariant components of a vector, then v; ; — v;; is a second-order
tensor under general coordinate transformations. We now contract this tensor with the Levi-
Civita symbol €% to find u’ = —€*(v;), — vg;)/2,/g. How do u’ behave under a general
coordinate transformation? Does this object look familiar? Comment.

2- Show that Christoffel symbols (of the second kind) T y; satisfy the following relation:
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where g is the determinat of the metric tensor. Use this and show that the divergence of a
vecotr field ¢ can be expressed as follows:
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Specializing to spherical coordinates, verify that this expression gives the familiar result for
the divergence of a vecotr in spherical coordinates.

Hint: You may use the fact that g = >, gi; A (where AY denotes the cofactor of the element
gi; and summation is performed over j only), and the relation between g*/ and A", to first
show that:
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3- Defining the second covarinat derivative of a vecotr v; as v,jr = (v;;;):x, show that:
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are the components of the Riemann curvature tensor. Verify that R’ ik 1s indeed a tensor under
general coordinate transformations. Use this to show that in three-dimensional FKuclidean
space all components of the Riemann tensor identically vanish for any coordinate system.
Hint: You may use the definition of the Chrsitoffel symbols Fkl-j =" . 0¢;/0uw’ to find how
they are transformed under a change of coordinates:
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4- One may define Christoffel symbols of the first kind by I';;;, = g ke Verify that:
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and use this to show that the covariant derivative of the metric tensor identiucally vanishes,
i.e., 9ij:k = 0.



