PHYC 467: Methods of Theoretical Physics II

Spring 2016

Homework Assignment #4

(Due March 29, 2016)

- 1- Generators L_i of a Lie group can be normalized such that $\text{Tr}(L_iL_j) = \delta_{ij}/2$. Show that the resulting structure constants are purely imaginary and totally antisymmetric in this case. Verify that the matrices $\sigma_i/2$ are normalized generators of SU(2) (σ_i are the Pauli matrices).
- **2-** The adjoint representation of an algebra is defined as the representation in which the matrix elements of generators are given by $(L_i)_{jk} = c_{ijk}$, where c_{ikj} are the structure constants of the algebra.
- (a) Assuming normalzied L_i 's show that $\det(L_i) = \det(-L_i)$ in the adjoint representation.
- (b) Explicitly write down the SU(2) generators in its adjoint representation. Use the result in part (a) to show that $det(L_i) = 0$ in the representation of SU(2) and verify this.
- **3-** Let a_1^{\dagger} , a_1 and a_2^{\dagger} , a_2 denote two sets of creation and annihilation operators that satisfy the following commutation relations:

$$[a_i,a_j^\dagger]=\delta_{ij} \quad , \quad [a_i,a_j]=[a_i^\dagger,a_j^\dagger]=0 \ .$$

(a) Show that the three operators

$$T_1 = a_1^{\dagger} a_2 + a_2^{\dagger} a_1$$
 , $T_2 = -i(a_1^{\dagger} a_2 - a_2^{\dagger} a_1)$, $T_3 = a_1^{\dagger} a_1 - a_2^{\dagger} a_2$,

generate the SU(2) algebra.

(b) Show that the number operator defined as $N = a_1^{\dagger} a_1 + a_2^{\dagger} a_2$ is a Casimir operator of this SU(2) algebra.

4- The translation-rotation group in three dimensions (called the Euclidean group E_3) has 6 generators $P_{1,2,3}$ (for translations) and $J_{1,2,3}$ (for rotations) obeying the following commutation relations:

$$[J_i, J_j] = i\epsilon_{ijk}J_k$$
 , $[P_i, P_j] = 0$, $[P_i, J_j] = i\epsilon_{ijk}P_k$.

- (a) What is the rank of this group?
- (b) Show that $\vec{P} \cdot \vec{P}$ and $\vec{J} \cdot \vec{P}$ are Casimir operators of E_3 .
- **5-** Consider an *n*-dimensional unitary representation of a Lie group that is spanned by an orthonormal basis $|i\rangle$ $(1 \le i \le n)$.
- (a) Show that the basis $\langle i|$ also spans a representation of the group. What do the generators look like in this representation? Conclude that the two representations are complex conjugate of each other.
- (b) A representation is called real if generators in that representation and its complex conjugate are related by a similarity transformation. Show that the Pauli matrices σ_i obey $\sigma_2 \sigma_i \sigma_2 = -\sigma_i^*$, and use this to prove that the fundamental representation of SU(2) is real.