PHYC 511: Electrodynamics

Spring 2018

Homework Assignment \#6

(Due April 16, 2018)

1- A monochromatic plane electromagnetic wave is propagating along the z ditrection. Its electric field is given by:

$$
\vec{E}(\vec{x}, t)=E_{0} \hat{e}_{0} e^{i(k z-\omega t)} \quad, \quad \hat{e}_{0}=\left(\cos \frac{\theta}{2} \hat{x}+e^{i \phi} \sin \frac{\theta}{2} \hat{y}\right),
$$

where θ and ϕ are arbitrary real constants.
(a) Write \hat{e}_{0} as a linear combination of the vectors $\hat{e}_{ \pm}=(\hat{x} \pm i \hat{y}) / \sqrt{2}, \hat{e}_{0}=\alpha \hat{e}_{+}+\beta \hat{e}_{-}$, and show that α and β have magnitudes $\sqrt{(1+\sin \theta \sin \phi) / 2}$ and $\sqrt{(1-\sin \theta \sin \phi) / 2}$, respectively, and their phase difference $\Delta \psi$ is given by

$$
\tan \Delta \psi=\tan \theta \cos \phi .
$$

(b) Transform to a new circular-polarization basis that is rotated relative to the original basis by angle δ, and show that a particular choice of δ can completely eliminate the relative phase $\Delta \psi$. How is this choice related to the orientation of the polarization ellipse of the plane wave?
(c) Find the ratio of the major-to-minor axes and the sense of rotation of the tip of the electric field vector on the ellipse.

2- Problem 7.3, part (a), Jackson.

3- Problem 7.4, Jackson.

4- Problem 7.6, parts (a) and (b), Jackson.

5- Problem 7.17, parts (a) and (b), Jackson.

