Physics 511: Electrodynamics

Spring 2019

Midterm Exam #1

March 6, 2019

Instructions:

- Do any 1 of problems 1, 2 and any 1 of problems 3, 4. All problems carry equal weight.
- This is an open-book open-note exam.

- 1- The three-dimensional region $x \ge 0$, $y \ge 0$ is bounded by conducting planes held at zero potential. A point charge q is placed at the point (a, b, 0) in this region.
- (a) Find the surface charge density on the conductors.
- (b) Determine the magnitude and direction of the force acting on the charge q. What is the amount of work done to bring the charge q from infinity to the point (a, b, 0).

- 2- A conducting spherical shell of inner and outer radii a and b is placed in a uniform external electric field \vec{E}_0 . The space at r < a is filled with dielectric material of permittivity ϵ , and a point charge -q is located at its center.
- (a) Determine the electric potential in all regions.
- (b) Find the surface density of free and bound charges on the interfaces at at r=a and r=b.

3- Consider a sphere of radius R rotating at angular velocity ω about the z axis, with a surface charge density given by $\sigma(\theta) = \sigma_0 \cos\theta$. Show that the vector potential is given by:

$$\vec{A}(\vec{x}) = \frac{4\pi}{5} \frac{\sigma_0 \omega}{c} r^2 \cos\theta \sin\theta \hat{\phi} \qquad r \leq R,$$

$$\vec{A}(\vec{x}) = \frac{4\pi}{5} \frac{\sigma_0 \omega}{c} \frac{R^5}{r^3} \cos\theta \sin\theta \hat{\phi} \qquad r > R.$$
(1)

$$\vec{A}(\vec{x}) = \frac{4\pi}{5} \frac{\sigma_0 \omega}{c} \frac{R^5}{r^3} \cos\theta \sin\theta \hat{\phi} \qquad r > R.$$
 (2)

What are the non-vanishing magnetic multipole moments for this system?

- 4- A circular loop of radius a carrying a current I_a is placed parallel to another loop of radius b carrying a current I_b . The loops are co-axial but the smaller loop is centerd at a height habove the larger one. The currents I_a and I_b flow in opposite directions. Consider the limiting case when $a \ll b$, h.
- (a) What is the force experienced by the smaller loop?
- (b) How does the force change when the direction of the current in (1) one of the loops is reversed; (ii) both loops is reversed?

(Hint: In the limit $a \ll b$, h the smaller loop may be considered as a magnetic dipole.)

