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1- The use of microcalorimeters for the detection of X-rays constitutes a relatively new
technology. The basic idea behind their design is that the absorption of an incoming X-ray
produces a measurable change in temperature, whose value is proportional to the energy
of incoming photon. But building such devices is not that easy:

(a) To see why, calculate how much a 6 keV X-ray photon would raise the temperature
of a penny at room temperature. Modern U.S. pennies consist of zinc with a thin copper
plating, with a specific heat capacity C ≈ 0.38 J g−1 K−1. What degree of accuracy would
be required to measure this temperature, and is that feasible?

The microcalorimeter detector relies on the temperature change induced within a tiny
flake of silicon semiconductor, whose conductivity depends on the amount of impurity
added to the silicon and on its temperature. Consider 1 gram of silicon held at 0.1 Kelvin.
What must its heat capacity be in order for a 6 keV X-ray photon to cause a temperature
rise of about 4 µK? (A fractional change of few parts in 105 is measurable with today’s
technology)

(b) Microcalorimeters can measure the energy of an incoming X-ray to an accuracy of 0.3%,
or better. Compare this with a charged-coupled device (a CCD), in which the photon
energy is shared among many electrons, each of which carries a typical energy ≈ 3.65
eV. The energy of the absorbed X-ray is determined from the number of liberated CCD
electrons, which has an uncertainty due to Poisson distribution. What kind of resolution
should one expect from this older type of instrument?

2- In this problem we examine several important characteristics of X-ray detectors.

(a) A crucial consideration for detectors that record the arrival of individual photons is
detector dead time. If the count rate from a bright X-ray source is high enough, the X-ray
detector may miss a legitimate count because it is still processing a previous event. The
detector is “dead” for a time ∆t after registering a count. Work out a simple equation for
the actual count rate R′ in terms of the measured count rate R and ∆t. Counts that are
missed do not themselves cause dead time. If we measure a source to have a count rate of
R = 100 counts s−1 and the dead time is ∆t = 1 ms, what is the actual count rate?



(b) At X-ray energies of 2-10 keV, the brightest steady source in the sky (excluding the
Sun) is Sco-X1, with a flux of 3 × 10−7 erg cm−2 s−1 in this bandpass. Calculate the
approximate flux from this source assuming an average photon energy of 4 keV. Use this
to estimate the count rates expected for the following two detectors, each consisting of
a proportional counter behind a collimator: Uhuru (the first X-ray satellite observatory;
proportional counter effective area 280 cm2, which is a third of the geometric area of 840
cm2 due to the less than 100% efficiency in detecting photons) and the proportional counter
array (PCA) of RXTE (effective area 920 cm2 for one of the five units; the geometric area
of the unit is about 1580 cm2).

Repeat the above calculations for the Crab Supernova remnant (flux 2×10−8 erg cm−2

s−1), Perseus cluster of galaxies (flux 1 × 10−9 erg cm−2 s−1), and quasar 3C273 (flux
8×10−11 erg cm−2 s−1). These are all among the brightest objects in their class. The dead
time for each PCA unit is 8.8 µs. Are dead-time corrections important for the PCA when
observing Sco-X1.

(c) Consider a detector with a count rate for the background of B. If photons from a source
are detected at the rate R, then the signal (i.e., the total number of counts) detected in
time t is S = Rt and noise in this signal is N =

√
Rt+Bt. Using your results from

above, calculate how long an integration time the Uhuru satellite needed to measure the
brightness of 3C273 with S/N = 100 (an accuracy of 1%). Make the calculation using
both B = 0 and with the true value of B = 10 counts s−1. Note that the above estimate
of the noise assumes that B is known perfectly, which is not the acse in X-ray astronomy
because B varies with the position of the satellite in its orbit and with time.

(d) The Einstein X-ray Observatory had mirrors with a total collecting area of 350 cm2.
If the Imaging Proportional Counter (IPC) at the focus of the mirrors detects half of the
photons incident on the mirrors (due to losses in the mirrors and IPC), calculate the count
rate expected for 3C273 using your photon flux from above. If a background of 10 counts
s−1 is uniformly spread throughout the IPC, which had an approximately square field of
view with a side of 75 arcminutes, and all of the counts from 3C273 are concentrated in
a spot 1 arcminute (the resolution of the IPC), will the background contribute significant
uncertainty to the measurement of the flux from 3C273?

3- The precision with which sources are measured is critically important to how reliably a
detection is believed to have been made. In measurements governed by counting statistics,
one must define an error very carefully because in principle there is no absolute limit to
the range of fluctuations associated with a measured quantity. A measurement can always
produce a number greater than a quoted limit if one is willing to wait long enough.

Every instrument produces its own characteristic background noise. Some of it is
statistical - e.g., due to random events - but the rest may be systematic, meaning that the
instrument does not perform exactly as expected. Though the latter needs to be evaluated
case by case, the former can actually be quantified.

(a) For a steady source producing an average number of counts m over a fixed interval, the



probability of measuring x events during that interval is given by the Poisson distribution

P (x) =
mxe−m

x!
.

Show that
∑∞
x=0 P (x) = 1.

(b) If instead the variable to be measured is continuous (e.g., when the count is so high
that its variation may be described differentially), it is more appropriate to use the normal
distribution to describe the differential probability dP (x) of finding a value x within the
interval (x, x+ dx):

dP (x) =
1√
2πσ

exp

[
−(x−m)2

2σ2

]
,

where σ characterizes the width of the distribution. Show that the full width half maximum
(FWHM) of the normal distribution is 2.36σ.

(c) Show that the normal distribution approximates the Poisson distribution very well for
large m, if σ =

√
m.

(d) Suppose that a CDD is counting photons from a variable source with an average count
rate of 100 photons per given exposure time. During a particular observation, however,
it measures 130. What is the probability that this higher count rate satisfies an actual
brightening of the source, as opposed to a mere statistical fluctuation? Is this significant?

4- How far should we expect X-rays to propagate through the intergalactic medium? Sup-
pose the gas in the intergalactic medium is ionized and has an average electron density
ne ≈ 2× 10−7 cm−3. What is the mean-free-path (in Gpc) to Thomson scattering through
this plasma? (The cross section for this process is σT = 0.66 × 10−24 cm2.) Should we
expect to see X-ray sources at a distance corresponding to a significant fraction of the size
of the visible universe ∼ 13.5 Glyr?

5- Typically, a neutrino of energy Eν has a scattering cross section of

σ ≈ 10−44
(
Eν
mec2

)2

cm2

off nucleons when Eν � 1 GeV.

(a) Find the mean-free-path of a neutrino with energy Eν = 10 MeV (produced from Boron
decay in the pp III chain of Hydrogen burning) inside the Sun. The average density of the
Sun is ρ̄� ∼ 1 g cm−3.

(b) Now consider a neutron star that is formed as a result of supernova core collapse.
For a neutron star MNS ≈ M� and RNS ∼ 10 km. What is the mean-free-path of a neu-
trino with Eν = 10 MeV (the typical energy for supernova neutrinos) inside a neutron star?


