PHYC 581: High Energy Astrophysics

Fall 2018

Homework Assignment #2

(Due October 10, 2018)

1- Recall the relation

$$\frac{dE}{dt} = \vec{F} \cdot \vec{v}$$

in Newtonian mechanics, where E is the total energy of a particle that is moving with velocity \vec{v} and $\vec{F} = d\vec{p}/dt$ is the net force. Show that this relation is also valid in relativistic mechanics.

- **2-** In the quasar 3C279, EGRET aboard the *Compton* Gamma Ray Observatory observed a non-thermal spectral component extending up to 30 GeV. If the particles producing these γ -rays were for some reason accelerated by an electric field E within 10^{14} cm of the black hole, what would be the value of E?
- **3-** A process analogue to Fermi acceleration involves plasma oscillations instead of magnetized gas clouds or shock waves. This process draws energy from the plasma waves and transfers it to the particles.
- (a) Consider a sinusoidal electric field

$$\vec{E}(x,t) = E_0 \cos(kx - \omega t)\hat{z}.$$

Let a particle of mass m, and charge e "suddenly" be placed within this field. Show that the kinetic energy imparted to the particle by the wave is

$$\frac{e^2 E_0^2}{2m(kv_x - \omega)^2} \sin^2[(kv_x - \omega)t],$$

where the particle's velocity vector is written as $\vec{v} = (v_x, v_y, v_z)$.

(b) Assume non-relativistic motion, and let the velocity distribution function $f(v_x)$ be slowly varying near the wave phase velocity ω/k . Show that the power imparted to the particles by the wave is

$$P \approx \frac{\pi e^2 E_0^2 f(\omega/k)}{2mk}$$
.

- (c) How long would it take an electron top reach a velocity $v_z=c/2$ (from $v_z=0$) if $v_x=\omega/2k$ and $E_0=1000$ V/cm? How about the case $v_x=0.9\omega/k$?
- 4- Consider a region of uniform electric field $\vec{E}=E\hat{z}$, in which charges e of mass m are injected. The conductivity in this region is σ . If the resistivity of the plasma is due just to particle-particle collisions, estimate the maximum Lorentz factor $\gamma_{\rm max}$ attained by the charges. You may assume that E is so large that the particle velocity quickly reaches c. What is $\gamma_{\rm max}$ for $E=10^{10}$ statvolt cm⁻¹ and $\sigma=10^6$ mhos?
- 5- Consider the motion of a point charge in crossed (i.e., perpendicular) uniform fields \vec{E} and \vec{B} .
- (a) Show that the fields in the frame drifting with velocity $\vec{v} = c\vec{E} \times \vec{B}/B^2$ are

$$\vec{E}' = 0$$
 , $\vec{B}' = \vec{B} \left(1 - \frac{E^2}{B^2} \right)^{1/2}$,

where B and E denote the magnitude of \vec{B} and \vec{E} respectively. What is the significance of this frame?

(b) Show that in this drifting frame, the particle undergoes circular motion with angular frequency

$$\omega' = \frac{u_{\perp}'}{R'} \,,$$

where R' is the radius of the circle and u'_{\perp} is the component (perpendicular to the magnetic field) of the particle's velocity relative to the drifting frame. Find R' and ω' .

(c) Consider the special case when a particle starts from rest in the laboratory. Show that each of the cycles in the space is enlarged by a factor γ^2 in the perpendicular direction and by γ^3 in the drift direction as compared with the non-relativistic limit.