Lab 11: Relaxation oscillators

Relaxation oscillators:

Cycle of adding and dissipating energy

Asymmetric, non-sinusoidal time behavior

Examples of systems with this behavior:

- Laser physics
- Heart muscle
- Vocal cords
- Predator-prey population cycles

Feedback Mechanism

Energy Storage Device

(capacitor, material system, gain medium for lasers, ...)

 Rapid Switching device that releases the stored energy (diode, switch, discharge lamp, opamp, etc...)

Determine charging rate Don't use impedance $Z = 1/j\omega C$

$$V_{\text{cap}} = V_{\text{B}} \left(1 - e^{-t/RC} \right) = V_{\text{B}} \left(1 - e^{-t/\tau} \right)$$

$$\text{Vcap}$$

Laser Oscillators: Optical gain inside a feedback cavity

- Excitation & Amplification
- Feedback
 - Oscillation

Laser Oscillators: Optical gain inside a feedback cavity

Gain medium stores energy: analogous to **<u>Capacitor</u>**

V- greater than V+

Output drives to negative ∞ Clamped at -15V of power supply

V+ greater than V-

Output drives to positive ∞ Clamped at +15V of power supply

Make V+ a reference voltage

Voltage divider: R1 = R2

 $V_{+} = \frac{1}{2} VOUT = +7.5V \text{ or } -7.5V$

Slewing: Op-Amp cannot switch instantly

Limits the maximum oscillator frequency

555 Timer Chip

Make rectangular wave relaxation oscillator

Period adjustable with R and C

Set from microseconds to hours

Adjustable duty cycle: T_{ON} / Period

VI Server Architecture

More tools...

How to....?

- Control objects in the Front Panel

Objects: Plots, Charts, Controls, indicators, etc...

- Edit properties of a running VI

Objects have **PROPERTIES** and **METHODS**

PROPERTIES are attributes of an object

- Color
- Size
- Position

METHODS are actions or operations of an object

- Initializing a control
- Save data to a spread sheet
- Sending data via Ethernet

PROPERTIES are changed with **PROPERTY NODES**

METHODS are changed with **INVOKE NODES** More advanced, data processing, communication.. (left for later)

Capadiar Voltage	jun Time
100- DC voltage	R 1/1E+6 C 1/1E-6
75- 70.4	Time constant (sec) 1
50 -	dt 💭 0.2
0-	Breakdown (V) 70

Storing and releasing energy with a capacitor: Capacitive discharge ignition

