Lab 12: Timing and Control

Relaxation Oscillator

Edge triggering of single-shot square pulse

Timing diagram: Traffic Light

Timing diagram: Traffic Light

Timing diagram: Traffic Light

Timing: Traffic Light (State 1)

North-South bound

Timing: Traffic Light (State 2)

North-South bound

Timing: Traffic Light (State 3)

North-South bound

Timing: Traffic Light (State 4)

North-South bound

Timing: Traffic Light (State 5)

North-South bound

Timing: Traffic Light (State 6)

North-South bound

Differentiating pulses with RC circuit

100% Hardware

Cheaper No PC No proprietary software/OS

More reliable No PC to crash

More compact Depends on complexity

Inherently faster Interface I/O limits speed

Less power

LabView + Hardware

Easier to setup/troubleshoot

Easier to expand/adapt new versions

LabView code more transparent than circuit schematic

Probably better approach for research lab environment

EMBEDDED SYSTEMS

Dedicated computer hardware replaces the general purpose PC

Inexpensive, low-power micro-controllers (RAM, Flash, I/O, etc)

Optimized to solve a specific problem or task

Examples

- Digital watch
- MP3 player
- Smoke detector

- Game console
 - PDA
- Digital camera
- Cellphone
- GPS
- Microwave oven

CONTROL: OPEN LOOP

EXAMPLES:

- Washing machine
- Lawn sprinkler system

CONTROL: CLOSED LOOP

CLOSED LOOP

MEASURE

CLOSED LOOP

MEASURE

CLOSED LOOP

MEASURE

Examples of closed loop controllers

Cruise control on car

Thermostat on furnace

Water level in hot water heater or swamp cooler

Cabin air pressure in passenger plane

Clock on a PC

Optical clocks and atomic clocks

Cryostat Temperature Controller

Cryostat Temperature Controller

Two-direction traffic light implemented with state-machine on a \$1 TI micro-controller. Battery powered.

//Runs a 6 LEDS in sequence, simulating a two-direction traffic light. //Implemented with timer interrupts using the 12 kHz VLO clock.	for (;;) { // State 1	// Endless loop	
//MCU spends most of its time in LPM3. //This is a state-machine with 6 states	P10U	P1OUT &= ~BIT2; //Yellow 2 off	
	1100	TACCR0=12000; //2 second wait	
	LPM3	3;	
#Include <msp430g2253.n> #ifodef TIMEPO_A1_VECTOR</msp430g2253.n>	//State 2		
#define TIMER0_A1_VECTOR	PIOLIT - BIT6: //Green 1 on		
#define TIMER0_A0_VECTOR TIMERA0_VECTOR #endif	1100	TACCR0=30000; //5 second wait LPM3:	
	//State 3	,	
int main(void) { WDTCTL = WDTPW WDTHOLD; // Stop watchdog timer P1DIP = PIT0 + PIT6 + // Direction 1: Pad vollow, groop on P10 - 14 - 8 - 16		P1OUT &= ~BIT6; //Green 1 off P1OUT = BIT4; //Yellow 1 on TACCR0=12000; //2 second wait	
PIDIR = BIT0 + BIT4 + BIT0, // Direction 1. Red, yellow, green on P1.0, 1.4, \approx 1.0 P1DIR = BIT1 + BIT2 + BIT3: // Direction 2: Red, yellow, green on P1.1, 1.2, & 1.3	//Stata A	LPM3;	
P1OUT $ =$ BIT0 + BIT1 + BIT3 + BIT3 + BIT4 + BIT6; // greater all LEDs on	//State 4	P1OUT &= ~BIT4; //Yellow 1 off	
//Divide the VLO (ACLK) as follows: DIVA_0,1,2,3 correspond to divide by 1,2,4,8		P1OUT = BIT0 + BIT1; //Both red LEDs on TACCR0=12000; //2 second wait	
//For DCU = 150 kHz, set RSELX = 1 and DCUX = 3 BCSCT (1 - D)/A = 2	llOtata E	LPM3;	
TACCR0=6000; //12000 counts for 1 second at DIVA_0;	//State 5	P1OUT &= ~BIT1' //Red 2 off	
//Maximum count is 65535 (unsigned 16-bit)		P1OUT = BIT3; //Green 2 on	
TACCTL0 = CCIE; //Enable timer interrupt		TACCR0=24000; //4 second wait	
TACTL I= TASSEL 1 + MC 1: //Set Timer A to ACLK: MC 1 to count up to TACCR0.	//State 6	LPM3;	
_BIS_SR(GIE); //Enable global interrupts. Shouldn't be set until module is fully configured	P1OU	P1OUT &= ~BIT3; //Green 2 off	
LPM3;		P1OUT = BIT2; //Yellow 2 on	
P1OUT &= ~(BIT0 + BIT1 + BIT2 + BIT3 + BIT4 + BIT6); //Turn off all LEDs		TACCR0=12000; //2 second wait	
		LPM3;	
	}	J	
	#pragma vector=TIMER0_A0_VECTOR		
	interrupt voi	d timerfoo (void)	
	ι .	IPM3 EXIT	

}