Lab 3: Capacitors and Inductors in AC circuits

Review of Complex Numbers

$$
\begin{aligned}
& j=\sqrt{-1} \\
& z=a+j b
\end{aligned}
$$

Review of Complex Numbers

$$
\begin{aligned}
& j=\sqrt{-1} \\
& z=a+j b=A e^{j \phi} \\
& A=\sqrt{a^{2}+b^{2}} \\
& \phi=\tan ^{-1}\left(\frac{b}{a}\right)
\end{aligned}
$$

Review of Complex Numbers

$$
\begin{aligned}
& j=\sqrt{-1} \\
& z=a+j b=A e^{j \phi} \\
& A=\sqrt{a^{2}+b^{2}} \\
& \phi=\tan ^{-1}\left(\frac{b}{a}\right) \\
& e^{j \phi}=\cos \phi+j \sin \phi \\
& e^{j \frac{\pi}{2}}=\cos \left(\frac{\pi}{2}\right)+j \sin \left(\frac{\pi}{2}\right)=j
\end{aligned}
$$

OUR ESSENTIAL WORKING ASSUMPTION: AC \equiv SINUSOIDAL FUNCTION

T: Period
Frequency: $f=1 / T$

Capacitor in AC circuit

Capacitor in AC circuit

Inductor in AC circuit

Inductor in AC circuit

Ohm's Law for L and C : Impedance (Z)

$$
\xlongequal{\underline{1}} \quad Z_{C}=\frac{V_{C}}{I_{C}}=\frac{V_{o} \sin \omega t}{\omega C V_{o} \cos \omega t}=\frac{V_{o} \sin \omega t}{\omega C V_{o} \sin \left(\omega t+\frac{\pi}{2}\right)}
$$

Ohm's Law for L and C : Impedance (Z)

$\xlongequal{\ddagger} \quad Z_{C}=\frac{V_{C}}{I_{C}}=\frac{V_{o} \sin \omega t}{\omega C V_{o} \cos \omega t}=\frac{V_{o} \sin \omega t}{\omega C V_{o} \sin \left(\omega t+\frac{\pi}{2}\right)}$

$$
\begin{aligned}
& L \quad Z_{L}=\frac{V_{L}}{I_{L}}=\frac{V_{o} \sin \omega t}{-\left(V_{o} / \omega L\right) \cos \omega t}=\frac{V_{o} \sin \omega t}{-\left(V_{o} / \omega L\right) \sin \left(\omega t+\frac{\pi}{2}\right)}, ~
\end{aligned}
$$

Ohm's Law for L and C : Impedance (Z)

$$
L \quad Z_{L}=\frac{V_{L}}{I_{L}}=\frac{V_{o} \sin \omega t}{-\left(V_{o} / \omega L\right) \cos \omega t}=\frac{1 / \sin \omega t}{-\left(V_{0} / \omega \mathrm{L}\right) \sin \left(\omega t+\frac{\pi}{2}\right)} 90^{\circ} \text { phase shift }
$$

Ohm's Law for L and C: Impedance (Z)

$\frac{1}{1} C$

$$
Z_{C}=\frac{V_{C}}{I_{C}}=\frac{1}{j \omega C}
$$

$$
Z_{L}=\frac{V_{L}}{I_{L}}=\frac{\omega L}{-j}=j \omega L
$$

90° phase-shift in polar form: $e^{j \frac{\pi}{2}}=\cos \left(\frac{\pi}{2}\right)+j \sin \left(\frac{\pi}{2}\right)=j$

Impedance of a Resistor:

$$
\left\{\begin{array}{l}
Z_{R}=\frac{V_{R}}{I_{R}}=R
\end{array}\right.
$$

Impedance arithmetic: same as a resistor

EXAMPLE 1

$$
Z=\underset{\text { Resistance }}{Z_{R}+Z_{L}=R}+\underbrace{j \omega L}_{\text {Reactance }}
$$

EXAMPLE 2

$$
Z=Z_{R}+Z_{L}=B-\underbrace{\frac{j}{\omega C}}_{\text {Resistance }}
$$

EXAMPLE 3: Voltage Divider

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{Z_{C}}{Z_{R}+Z_{C}}=\frac{1 / j \omega C}{R+1 / j \omega C}=\frac{1}{1+j \omega R C}
$$

EXAMPLE 4: Voltage Divider

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{Z_{R}}{Z_{R}+Z_{L}}=\frac{R}{R+j \omega L}=\frac{1}{1+j \omega L / R}
$$

