Lab 4: AC circuits (II)

REVIEW

AC analysis of circuits using complex numbers

Assumptions:

- i) Steady-state
- ii) Sinusoidal waveforms: $V_o \sin \omega t$

Ohm's Law for L and C: Impedance (Z) Measured in ohms

$$\frac{1}{\int} c \qquad Z_C = rac{V_C}{I_C} = rac{1}{j\omega C}$$

$$\begin{cases} Z_L = rac{V_L}{I_L} = rac{\omega L}{-j} = j\omega L \end{cases}$$

900 phase-shift in polar form: $e^{j\frac{\pi}{2}}=\cos(\frac{\pi}{2})+j\sin(\frac{\pi}{2})=j$

AC circuit: High-pass

$$\frac{V_{OUT}(\omega)}{V_{IN}(\omega)} = \frac{R}{R + 1/j\omega C}$$

AC circuit: High-pass

$$\frac{V_{OUT}(\omega)}{V_{IN}(\omega)} = \frac{R}{R + 1/j\omega C}$$

The Bode Plot for | Vout/Vin

HW Bode 1905—1982 Bell Labs

Plot amplitude on a dB scale

The Decibel: A Ratio

RATIO	POWER $10 \log_{10} \left\{ \frac{P_{\text{signal}}}{P_{\text{ref}}} \right\}$	FIELD $20\log_{10}\left\{\frac{A_{\text{signal}}}{A_{\text{ref}}}\right\}$
1	0 dB	0 dB
10	10 dB	20 dB
100	20 dB	40 dB
2	3 dB	6 dB
0.01	–20 dB	-40 dB

In honor of Alexander Graham Bell

dBm:
$$10 \log_{10} \left\{ \frac{P_{\text{signal}}}{1 \text{ mW}} \right\}$$

$$0 \text{ dBm} = 1 \text{ mW}$$

AC circuit: High-pass

Parallel LC circuit

Parallel LC circuit

Resonance at:
$$f = \frac{1}{2\pi\sqrt{LC}}$$

C = 100 nF L = 100 uHfres = 50.3 kHz

 $R = 100\Omega$, 1 k Ω , 5k Ω

Q-factor: Sharpness of Resonance

$$Q=rac{\omega_0}{\Delta\omega}=rac{f_0}{\Delta f}$$
 Sharper resonance \longrightarrow Higher Q

 Δf = frequency range between the -3 dB points

-3 db ≈ 0.707 of the peak

Q-factor: Sharpness of Resonance

Example RLC circuit:

 $R = 100 \Omega$, 1 k Ω , 5 k Ω

Q = 3.1, 31, 158

$$Q = R\sqrt{\frac{C}{L}}$$

Series LC circuit

Series LC circuit

$$\frac{V_{OUT}}{V_{IN}} = \frac{R}{R + j\omega L + 1/j\omega C}$$

$$C = 10 \text{ nF}$$

 $L = 10 \text{ uH}$
 $fres = 503 \text{ kHz}$

$$R = 5 \Omega$$
, 10 Ω , 20 Ω
 $Q = 6.3$, 3.1, 1.6

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

