Lab 4: AC circuits (II)

REVIEW

AC analysis of circuits using complex numbers

Assumptions:

i) Steady-state
ii) Sinusoidal waveforms: $V_{o} \sin \omega t$

Ohm's Law for L and C: Impedance (Z) Measured in ohms

$$
\begin{array}{ll}
& Z_{C}=\frac{V_{C}}{I_{C}}=\frac{1}{j \omega C} \\
L & Z_{L}=\frac{V_{L}}{I_{L}}=\frac{\omega L}{-j}=j \omega L
\end{array}
$$

900 phase-shift in polar form: $e^{j \frac{\pi}{2}}=\cos \left(\frac{\pi}{2}\right)+j \sin \left(\frac{\pi}{2}\right)=j$

AC circuit: High-pass

AC circuit: High-pass

$$
\frac{V_{O U T}(\omega)}{V_{I N}(\omega)}=\frac{R}{R+1 / j \omega C}
$$

The Bode Plot for |Vout/ $/ V_{\text {in }} \mid$

The Decibel: A Ratio

RATIO	POWER	FIELD		
$10 \log _{10}\left\{\frac{P_{\text {signal }}}{P_{\text {ref }}}\right\}$	$20 \log _{10}\left\{\frac{A_{\text {signal }}}{A_{\text {ref }}}\right\}$		\quad	Alexander Graham Bell
:---:				
1				

AC circuit: High-pass

Inductor-capacitor in AC circuit: Resonance

Parallel LC circuit

Inductor-capacitor in AC circuit: Resonance

Parallel LC circuit

Inductor-capacitor in AC circuit: Resonance

Resonance at: $f=\frac{1}{2 \pi \sqrt{L C}}$

Inductor-capacitor in AC circuit: Resonance

Inductor-capacitor in AC circuit: Resonance

Q-factor: Sharpness of Resonance

$Q=\frac{\omega_{0}}{\Delta \omega}=\frac{f_{0}}{\Delta f}$ Sharper resonance \rightarrow Higher Q
$\Delta f=$ frequency range between the -3 dB points
$-3 \mathrm{db} \approx 0.707$ of the peak

Q-factor: Sharpness of Resonance

Example RLC circuit:
$\mathrm{R}=100 \Omega, 1 \mathrm{k} \Omega, 5 \mathrm{k} \Omega$
$Q=3.1,31,158$

$$
Q=R \sqrt{\frac{C}{L}}
$$

Resonance in series LC circuit

Series LC circuit

Resonance in series LC circuit

Series LC circuit

$$
\frac{V_{O U T}}{V_{I N}}=\frac{R}{R+j \omega L+1 / j \omega C}
$$

Resonance in series LC circuit

Resonance in series LC circuit

