Lab 5: AC circuits (III)

Poles and Zeroes

$$
\frac{V_{O U T}(\omega)}{V_{I N}(\omega)}=G(\omega)=\frac{N(\omega)}{D(\omega)}
$$

Numerator: $N(\omega)=\left(\omega_{N 1}+j \omega\right)\left(\omega_{N 2}+j \omega\right) \times \ldots\left(\omega_{N m}+j \omega\right)$
Denominator: $D(\omega)=\left(\omega_{D 1}+j \omega\right)\left(\omega_{D 2}+j \omega\right) \times \ldots\left(\omega_{D m^{\prime}}+j \omega\right)$

$$
m \leq m^{\prime}
$$

Zeroes: Frequencies $\left(\omega_{N}\right)$ that make the numerator zero Poles: Frequencies (ω_{D}) that make the denominator zero

The Bode Plot for $|G(\omega)|$

Plot amplitude on a dB scale

POLES and ZEROES change the slopes on the Bode Plot

Amplitude response
ZERO: + $20 \mathrm{~dB} /$ decade
POLE: - $20 \mathrm{~dB} /$ decade

Phase response
ZERO: + 45 deg/decade
POLE: - 45 deg/decade

POLES and ZEROES dramatically affect the shape of a Bode plot

POLES and ZEROES dramatically affect the shape of a Bode plot

POLES and ZEROES dramatically affect the shape of a Bode plot

Example 1: Low-pass filter

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{Z_{C}}{Z_{R}+Z_{C}}=\frac{1 / j \omega C}{R+1 / j \omega C}=\frac{1}{1+j \omega R C}
$$

Pole in denominator

Pole at 3.2 kHz : -45 deg/decade

Example 2: 2-pole low-pass filter

Assume "no loading"

$$
\frac{V_{\mathrm{OUT}}}{V_{\mathrm{IN}}} \approx \underbrace{\left[\frac{1}{1+j \omega R_{1} C_{1}}\right.}_{\text {1st pole }}] \underbrace{\left[\frac{1}{1+j \omega R_{2} C_{2}}\right.}_{\text {2nd pole }}]
$$

$$
\begin{array}{ll}
R 1=5000 \Omega & R 2=500 \Omega \\
C 1=10 \mathrm{nF} & C 2=3 \mathrm{nF} \\
f=3.2 \mathrm{kHz} & f=10.6 \mathrm{kHz}
\end{array}
$$

$$
\begin{array}{ll}
R 1=5000 \Omega & R 2=500 \Omega \\
C 1=10 \mathrm{nF} & C 2=3 \mathrm{nF} \\
f=3.2 \mathrm{kHz} & f=10.6 \mathrm{kHz}
\end{array}
$$

$$
\begin{array}{ll}
R 1=5000 \Omega & R 2=500 \Omega \\
C 1=10 \mathrm{nF} & C 2=3 \mathrm{nF} \\
f=3.2 \mathrm{kHz} & f=10.6 \mathrm{kHz}
\end{array}
$$

Example 3: 2-pole low-pass filter

Assume "no loading" $\frac{V_{\text {OUT }}}{V_{\mathrm{IN}}} \approx \underbrace{\left[\frac{1}{1+j \omega R C}\right]^{2}}$
2 identical poles

Example 4: 1-pole + 1-zero

