Homework 3

(Due Date: Monday, Feb. 12)

Problem 1.- Given the function f(u, v) which depends on variables u and v with variances σ_u^2 and σ_v^2 , respectively, obtain the variance σ_f^2 of f(u,v) in terms of the variances σ_u^2 and σ_v^2 and the covariance σ_{uv} of u and v for the following cases where a and b are positive constants:

(a)
$$f = au \pm bv$$
 (b) $f = \pm auv$ (c) $f = \pm au/v$

(b)
$$f = +auv$$

(c)
$$f = +au/v$$

$$(\mathsf{d})\,f=au^{\pm b}$$

(e)
$$f = ae^{\pm bu}$$

(d)
$$f = au^{\pm b}$$
 (e) $f = ae^{\pm bu}$ (f) $f = a \ln (\pm bu)$

Find the uncertainty σ_x , in "x" as a function of the uncertainties σ_u , and σ_v , in u and v for the following functions:

(g)
$$x = \frac{1}{2(u+v)}$$
 (h) $x = \frac{1}{2(u-v)}$ (i) $x = \frac{1}{u^2}$ (d) $x = uv^2$ (j) $x = u^2 + v^2$

(h)
$$x = \frac{1}{2(u-v)}$$

(i)
$$x = \frac{1}{u^2}$$

$$(d) x = uv^2$$

(j)
$$x = u^2 + v^2$$

<u>Note</u>: for cases from (a) to (c) assume that the variables u and v are correlated. For cases from (g) to (j) assume that the variables u and v are not correlated.

Problem 2:

The Doppler shift describes the frequency change when a source of sound waves of frequency "f" moves with a velocity "v" towards an observer at rest as $\Delta f = fv/(u-v)$, where "u" is the velocity of sound. Determine the Doppler shift and its uncertainty for the situation when

$$u = (332 \pm 8) \text{ m/s}$$

$$v = (0.123 \pm 0.003) \,\text{m/s}$$

$$f = (1000 \pm 1) \text{ m/s}$$

What is the quantity that contributes the least and the most to the uncertainty of the Doppler shift?

Problem 3.- The period T of a pendulum is related to its length by the relation

$$T=2\pi\sqrt{\frac{L}{g}},$$

where g is the gravitational acceleration. Suppose you are measuring g from the period and length of the pendulum. You have measured the length of the pendulum to be 1.1325±0.0014 m. You independently measure the period to within an uncertainty of 0.06%, that is σ_T/T =6x10⁻⁴. What is the fractional uncertainty in g (σ_q/g), assuming that the uncertainties in L and T are independent and random?

Problem 4.- Niels Bohr showed that the energy (En) of the quantum states of a Hydrogen atom are given by:

$$E_n = -2\pi \frac{m \, e^4}{h^2} \frac{1}{n^2}$$

where m is the mass of the electron, e is charge and h is Planck's constant. n is the Principle Quantum Number and is an exact number. Suppose the relative error (σ_u/u) in each of the measured quantities m, e and h is:

Quantity	Rel. Error
m	0.001
e	0.002
h	0.0001

What is the relative error in energy of the third quantum state? Assume all the errors are statistically determined standard deviations of the mean.