Physics 581: Quantum Optics II

Problem Set \#1

Due Thursday Jan. 30, 2020

Problem 1: Boson Algebra (30 points)
This problem is to give you some practice manipulating the boson algebra. A great source is the classic "Quantum Statistical Properties of Radiation", by W. H. Louisell, reprinted by "Wiley Classics Library", ISBN 0-471-52365-8.
(a) Gaussian integrals in phase-space are used all the time. Show that

$$
\int \frac{d^{2} \beta}{\pi} e^{-\gamma|\beta|^{2}} e^{\alpha \beta^{*}-\beta \alpha^{*}}=\frac{1}{\gamma} e^{-|\alpha|^{2} / \gamma} .
$$

(b) Prove the completeness integral for coherent states

$$
\int \frac{d^{2} \alpha}{\pi}|\alpha\rangle\langle\alpha|=\hat{1} \text { (Hint: Expand in number states). }
$$

(c) The "quadrature" operators in optics are the analogs of X and $P, \hat{a}=\frac{\hat{X}+i \hat{P}}{\sqrt{2}}$. Show

$$
\begin{aligned}
& \hat{U}^{\dagger}(\theta) \hat{X} \hat{U}(\theta)=\cos \theta \hat{X}+\sin \theta \hat{P} \\
& \hat{U}^{\dagger}(\theta) \hat{P} \hat{U}(\theta)=\cos \theta \hat{P}-\sin \theta \hat{X}
\end{aligned} \text { where } \hat{U}(\theta)=e^{-i \theta a^{\dagger} \hat{a}}
$$

Interpret in phase space.
(d) Prove the group property of the displacement operator

$$
\hat{D}(\alpha) \hat{D}(\beta)=\hat{D}(\alpha+\beta) \exp \left\{i \operatorname{Im}\left(\alpha \beta^{*}\right)\right\}
$$

(e) Show that the displacement operators has the following matrix elements

Vacuum: $\langle 0| \hat{D}(\alpha)|0\rangle=e^{-|\alpha|^{2} / 2}$
Coherent states: $\left\langle\alpha_{1}\right| \hat{D}(\alpha)\left|\alpha_{2}\right\rangle=e^{-\left|\alpha+\alpha_{2}-\alpha_{1}\right|^{2} / 2} e^{i \operatorname{lm}\left(\alpha \alpha_{2}^{*}-\alpha_{1} \alpha^{*}-\alpha_{1} \alpha_{2}^{*}\right)}$
Fock states: $\langle n| \hat{D}(\alpha)|n\rangle=e^{-|\alpha|^{2} / 2} \mathrm{~L}_{n}\left(|\alpha|^{2}\right)$, where L_{n} is the Laguerre polynomial of order n

Problem 2: Thermal Light (25 points)

Consider a single mode field in thermal equilibrium at temperature T, Boltzmann factor $\beta=1 / k_{B} T$. The state of the field is described by the "canonical ensemble",
$\hat{\rho}=\frac{1}{Z} e^{-\beta \hat{H}}, \hat{H}=\hbar \omega \hat{a}^{\dagger} \hat{a}$ is the Hamiltonian and $Z=\operatorname{Tr}\left(e^{-\beta \hat{H}}\right)$ is the partition function.
(a) Remind yourself of the basic properties by deriving the following:

- $\langle n\rangle=\frac{1}{e^{\beta \hbar \omega}-1}$ (the Planck spectrum)
- $P_{n}=\frac{\langle n\rangle^{n}}{(1+\langle n\rangle)^{n+1}}$ (the Bose-Einstein distribution).
(b) Make a list-plot of P_{n} for both the thermal state and the coherent state on the same graph as a function of n, for each of the following: $\langle n\rangle=0.1,1,10,100$.
(c) Using the number-state representation, show that
- $\Delta n^{2}=\langle n\rangle+\langle n\rangle^{2}$. How does this compare to a coherent state?
- $\langle\hat{a}\rangle=0 \Rightarrow\langle\vec{E}\rangle=0$. How does this compare to a coherent state?
(d) Show that the Glauber-Sudharshan distribution of this state, $P(\alpha)=\frac{1}{\pi\langle n\rangle} e^{-|\alpha|^{2} /\langle n\rangle}$, satisfies $\int d^{2} \alpha P(\alpha)|\alpha\rangle\langle\alpha|=\sum_{n} \frac{\langle n\rangle^{n}}{(1+\langle n\rangle)^{n+1}}|n\rangle\langle n| . \quad$ Sketch $P(\alpha)$ in the phase plane.

