Physics 581, Quantum Optics II

Problem Set \#3

Due: Thursday March 5, 2020

Problem 1: Some more boson Algebra (20 Points)

(a) Show that the displacement operators are orthogonal according to the Hilbert-Schmidt inner product, $\operatorname{Tr}\left(\hat{D}^{\dagger}(\alpha) \hat{D}(\beta)\right)=\pi \delta^{(2)}(\alpha-\beta)$.
Hint: Recall $\operatorname{Tr}(\hat{A})=\operatorname{Tr}\left(\int \frac{d^{2} \alpha}{\pi}|\alpha\rangle\langle\alpha| \hat{A}\right)=\int \frac{d^{2} \alpha}{\pi}\langle\alpha| \hat{A}|\alpha\rangle$
(b) We have shown that the Fourier transform of the displacement operators are

$$
\hat{T}_{\sigma}(\alpha) \equiv \int \frac{d^{2} \beta}{\pi} \hat{D}_{\sigma}(\beta) e^{\alpha \beta^{*}-\alpha^{*} \beta}=\pi\left\{\delta^{(2)}(\alpha-\hat{a}) \delta^{(2)}\left(\alpha^{*}-\hat{a}^{\dagger}\right)\right\}_{\sigma} .
$$

Show that $\hat{T}_{-1}(\alpha)=|\alpha\rangle\langle\alpha|$ (Hint: Insert $\int \frac{d^{2} \alpha}{\pi}|\alpha\rangle\langle\alpha|$ appropriately)
(c) Show that for a pure state $\hat{\rho}=|\psi\rangle\langle\psi|$, the Wigner function is

$$
W(X, P)=\int_{-\infty}^{\infty} \frac{d Y}{2 \pi} \psi^{*}\left(X+\frac{Y}{2}\right) \psi\left(X-\frac{Y}{2}\right) e^{-i P Y}, \text { where } W(X, P)=\frac{1}{2} W(\alpha) .
$$

(d) Show that the Wigner function yields the correct marginals in X and P ,

$$
\int_{-\infty}^{\infty} d P W(X, P)=|\psi(X)|^{2}, \int_{-\infty}^{\infty} d X W(X, P)=|\tilde{\psi}(P)|^{2}
$$

and for an arbitrary quadrature

$$
\int_{-\infty}^{\infty} d P_{\theta} W(X, P)=\left|\tilde{\psi}\left(X_{\theta}\right)\right|^{2}
$$

Problem 2: Calculation of some quasiprobability functions (25 points)

(a) Find the $P . Q$, and W distributions for a thermal state

$$
\hat{\rho}=\frac{e^{-\hbar \omega \hat{a}^{\hat{a}} \hat{\alpha} k_{B} T}}{Z}, Z=\operatorname{Tr}\left(e^{-\hbar \omega \hat{a}^{\hat{}} \hat{a} / k_{B} T}\right)=\text { partition function }
$$

and show they are Gaussian functions. For example, you should find $P(\alpha)=\frac{1}{\pi\langle n\rangle} \exp \left(-\frac{|\alpha|^{2}}{\langle n\rangle}\right)$. Show that these three distributions give the proper functions in the limit, $\langle n\rangle \rightarrow 0$, i.e. the vacuum.
(b) Find the $P . Q$, and W distributions squeezed state $|\psi\rangle=\hat{D}(\alpha) \hat{S}(\zeta)|0\rangle$. In what sense is this state nonclassical?
(c) Find the Glauber-Sudharshan P-representation for a Fock state $|\psi\rangle=|n\rangle$. Comment.
(d) Consider a superposition state of two "macroscopically" distinguishable coherent states,
$|\psi\rangle=N\left(\left|\alpha_{1}\right\rangle+\left|\alpha_{2}\right\rangle\right),\left|\alpha_{1}-\alpha_{2}\right| \gg 1$, where $N=\left[2\left(1+\exp \left\{-\left|\alpha_{1}-\alpha_{2}\right|^{2}\right\}\right)\right]^{-1 / 2}$ is normalization. This state is often referred to as a "Schrodinger cat", and is very nonclassical. Calculate the Wigner function, for the case $|\psi\rangle=N(|\alpha\rangle+|-\alpha\rangle)$, with α real, and plot it for different values of $\left|\alpha_{1}-\alpha_{2}\right|=2 \alpha$. Comment please.
(e) Calculate the marginals of the Schrödinger-cat Wigner function in X and P and show they are what you expect.

Problem 3: An Alternative Representation of the Wigner Function. (20 points)
We have shown that Wigner function could be expressed as

$$
W(\alpha)=\frac{1}{\pi} \operatorname{Tr}(\hat{\rho} \hat{T}(\alpha))=\frac{1}{\pi}\langle\hat{T}(\alpha)\rangle, \text { where } \hat{T}(\alpha)=\int \frac{d^{2} \beta}{\pi} \hat{D}(\beta) e^{\alpha \beta^{*}-\beta^{*} \alpha}
$$

(a) Show that $\hat{T}(\alpha)=\hat{D}(\alpha) \hat{T}(0) \hat{D}^{\dagger}(\alpha)$.
(b) Show that $\hat{T}(0)=2(-1)^{\hat{a}^{\wedge} \hat{a}}$. (This is a tough problem. You may assume the answer and work backwards or try to find a direct proof).

Note: the operator $(-1)^{\hat{a}^{\dagger} \hat{a}}=\sum_{n}(-1)^{n}|n\rangle\langle n|=\int d X|-X\rangle\langle X|$ is the "parity operator" (+1 for even parity, -1 for odd parity). Thus we see that the Wigner function at the origin is given by the expected value of the parity.

$$
W(0)=\frac{2}{\pi} \operatorname{Tr}\left[\hat{\rho}(-1)^{\hat{a}^{\dagger} \hat{a}}\right]=\frac{2}{\pi} \sum_{n}(-1)^{n}\langle n| \hat{\rho}|n\rangle .
$$

(c) Show that general expression

$$
\begin{aligned}
& \hat{T}(\alpha)=2 \hat{D}(\alpha)(-1)^{\hat{a}^{\dagger} \hat{a}} \hat{D}^{\dagger}(\alpha)=2 \sum_{n}(-1)^{n} \hat{D}(\alpha)|n\rangle\langle n| \hat{D}^{\dagger}(\alpha), \\
& \quad \text { and thus } W(\alpha)=\frac{2}{\pi} \sum_{n}(-1)^{n}\langle n| \hat{D}^{\dagger}(\alpha) \hat{\rho} \hat{D}(\alpha)|n\rangle .
\end{aligned}
$$

This expression provides a way to "measure" the Wigner function. One displaces the state to the point of interest, $\hat{D}^{\dagger}(\alpha) \hat{\rho} \hat{D}(\alpha)$, one then measures the photon statistics $p_{n \alpha}=\langle n| \hat{D}^{\dagger}(\alpha) \hat{\rho} \hat{D}(\alpha)|n\rangle$. Putting this in the parity sum gives $W(\alpha)$ at that point! This is a form a quantum-state reconstruction, also know as "quantum tomography."

