Exam #1 Physics 160-01





2) Find the angle in degrees between the two vectors:  $\vec{A} = 2\hat{i} - 4\hat{j} + 6\hat{k}$  and  $\vec{B} = 3\hat{i} + 6\hat{j} + 1\hat{k}$ .

A) 66.2° B) 108° C) 123.° D) 1.98° E) 114° F) 46.4° G) 73.2° H) 83.0° I) 10.9° J) 76.3° K) 103.7

| $\vec{A} \cdot \vec{B} = \left  \vec{A} \right  \left  \vec{B} \right  \cos \theta = A_x B_x + A_y B_y + A_z B_z \Longrightarrow$   |
|-------------------------------------------------------------------------------------------------------------------------------------|
| $\theta = \cos^{-1} \left[ \frac{A_x B_x + A_y B_y + A_z B_z}{\left  \vec{A} \right  \left  \vec{B} \right } \right]$               |
| $=\cos^{-1}\left[\frac{(2)\cdot(3)+(-4)\cdot(6)+(6)\cdot(1)}{\sqrt{(2)^{2}+(-4)^{2}+(6)^{2}}\sqrt{(3)^{2}+(6)^{2}+(1)^{2}}}\right]$ |
| $=\cos^{-1}\left[\frac{-12}{50.75}\right]$                                                                                          |
| $=103.7^{\circ}$                                                                                                                    |

3) The position of a car, in meters, is given by the equation:

 $x = (4.0 m/s) \cdot t + (2.3 m/s^3) t^3 - 8.0 m$ . What is the instantaneous velocity at time t = 2s?

A) 4.0m/s B) 28m/s C) 8.8m/s D) 11m/s E) 6.9m/s F) 32m/s G) 18m/s H) 4.6m/s I) 8.6m/s J) 6.1m/s

To get the instantaneous velocity, you first have to take the first derivative of the position function:  $x = (4.0 m/s) \cdot t + (2.3 m/s^{3})t^{3} - 8.0m \Longrightarrow$   $\frac{dx}{dt} = (4.0 m/s) + 3(2.3 m/s^{3})t^{2}$ and then put in t=2s:  $\frac{dx}{dt}\Big|_{t=2} = (4.0 m/s) + 3(2.3 m/s^{3})(2s)^{2} = 31.6 m/s$  **4)** A test rocket is fired straight up from rest with a net acceleration of  $30 \text{ m/s}^2$ . After 2 seconds, the engine turns off, but the rocket continues to coast upward. What maximum elevation does the rocket reach?

| A) 327. m  |   |
|------------|---|
| B) 408. m  | r |
| C) 160. m  |   |
| D) 487. m  |   |
| E) 320. m  |   |
| F) 244. m  |   |
| G) 184. m  |   |
| H) 90.8 m  |   |
| I) 1230. m |   |
| J) 54.5 m  |   |
| <i>,</i>   |   |
|            | 1 |
|            |   |
|            |   |
|            |   |
|            |   |
|            |   |

| This is a 1-D problem but with two time periods:<br>$y_0=0m$ ,<br>$y_f=?m$ ,<br>$v_{ov}=0m/s$ ,                                                  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $v_{fy}=?m/s,$                                                                                                                                   |  |  |  |
| $a_y = 30 m/s^2$ ,                                                                                                                               |  |  |  |
| t=2s                                                                                                                                             |  |  |  |
| First solve for the height and velocity after the acceleration:<br>$v_f=v_0+v_{0y}t+1/2a_yt^2 => v_f=60m$ , $v_{fy}=v_{0y}+a_yt=>v_{fy}=60m/s$ . |  |  |  |
| then look at next phase:                                                                                                                         |  |  |  |
| y <sub>o</sub> =60m,                                                                                                                             |  |  |  |
| y <sub>f</sub> =?m,                                                                                                                              |  |  |  |
| v <sub>oy</sub> =60m/s,                                                                                                                          |  |  |  |
| v <sub>fy</sub> =0m/s,                                                                                                                           |  |  |  |
| $a_y = -9.8 \text{m/s}^2$ ,                                                                                                                      |  |  |  |
| t=?.                                                                                                                                             |  |  |  |
|                                                                                                                                                  |  |  |  |
| $v_{fy} = v_{oy} + a_y t => t = 6.12s$<br>$y_f = y_o + v_{oy} t + 1/2a_y t^2 => y_f = 244m.$                                                     |  |  |  |

) An arrow is shot horizontally (in the positive x-direction) from the top of a building at a speed of 25.0 m/s. The arrow strikes the ground at a point 100m horizontally from the base of the building. What is the height of the building?

| A) 87.8 m                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A) 87.8 m<br>B) 78.4 m<br>C) 98.0 m<br>D) 100. m<br>E) 60.0 m<br>F) 122. m<br>G) 137. m<br>H) 108. m<br>I) 44.4 m<br>J) 67.1 m | This is a 2-D problem and must be analyzed in each dimension.<br>In the x- direction,<br>$x_0=0m$ ,<br>$x_f=100m$ ,<br>$v_{0x}=20.0m/s$ ,<br>$v_{fx}=v_{0x}$ ,<br>$a_x=0m/s^2$ ,<br>t=?.<br>In the y- direction,<br>$y_0=?$ ,<br>$y_f=0m$ ,<br>$v_{0y}=0m/s$ ,<br>$v_{fy}=?$ ,<br>$a_y=-9.8m/s^2$ ,<br>t=?.<br>To get the initial height we need to know the time (since the<br>velocity in the x-direction is constant, and we know the<br>distance), so look in the x-direction, we use $x_f=x_0+v_{0x}t+1/2a_xt^2$ ,<br>with $a_x=0 => t=4s$ .<br>Then in the y-direction and use $y_f=y_0+v_{0y}t+1/2a_yt^2 =>$<br>$y_0=78.4m$ . |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

6) A person is swimming across a river that is 300 m wide. They swim at a constant speed relative to the water of 0.6 m/s and in a direction straight across the river (perpendicular to the flow of water). When they reach the opposite shore, they notice that they have drifted 500 m downstream. What was the speed and direction of the swimmer relative to the earth?

A) 0.98 m/s @ 48° downstream of across B) 1.17 m/s @ 59° downstream of across C) 1.36 m/s @ 67° downstream of across D) 1.28 m/s @ 48° downstream of across E) 0.86 m/s @ 38° downstream of across F) 1.22 m/s @ 53° downstream of across G) 1.17 m/s @ 31° downstream of across H) 1.36 m/s @ 23° downstream of across J) 0.86 m/s @ 52° downstream of across

The perpendicular (to the water) speed of the swimmer is 0.6m/s and they travel the 300 m (in that direction), so it takes them 500s. In that same time, the river brings them downstream 500 m, so the river is flowing at 1 m/s. So, their velocity relative to earth is

$$\vec{v}_{S/E} = \vec{v}_{S/W} + \vec{v}_{W/E} = 0.6 \, m/s \, \hat{i} + 1.0 \, m/s \, \hat{j}$$

where the x direction is across the river and the y direction is downstream.

The speed is then the magnitude of the velocity: 1.17m/s and the direction is 59° downstream of straight across.

An object moves along the track shown in the top-view diagram below. The object moves from point A to point E with constant speed.



7) Which choice best represents the acceleration vector of the object at point B?



A person riding on a Ferris Wheel of radius 14.0 m. It takes 40s for the rider to all the way around the wheel at a constant speed.



**9**) At the middle point on the right, indicated by the circle, which choice best represents his acceleration?



10) What is the magnitude of his acceleration?

A)  $4.40 \text{ m/s}^2$ B)  $0.44 \text{ m/s}^2$ C)  $11.2 \text{ m/s}^2$ D)  $9.80 \text{ m/s}^2$ E)  $0.34 \text{ m/s}^2$ F)  $1.40 \text{ m/s}^2$ G)  $1.18 \text{ m/s}^2$ H)  $0.20 \text{ m/s}^2$ I)  $2.43 \text{ m/s}^2$ J)  $8.51 \text{ m/s}^2$ 

Since it is constant speed, the acceleration of the rider is given by a radial component,  $a_R = v^2/r$ . The velocity is given by the distance over the time, in this case the circumference of his path over the period:  $v = 2\pi r/T = 2.20$ m/s. Then  $a_R = 0.34$ m/s<sup>2</sup>. **11**) A child wants to kick a ball a horizontal distance of 15.0 m over a fence 2.0 m high. They kick the ball at an angle of  $60^{\circ}$  above the horizontal. At what speed should they kick the ball so that it *just* passes over the fence?

