Lecture 1
 (Introduction and Units)

Physics 160-01 Spring 2017
Douglas Fields

My Info

General Class Info

Registering Your iClicker

- http://www.iclicker.com/r egistration/
- Use your name as it appears in banner.
- For student ID, use your banner ID.
- Clicker ID is on the back of your clicker.
- You only need to register your clicker once, so if you used it last semester (and registered it), then you don't have to do this.

Mastering Physics

- http://www.masteringphysics.com/
- Two types of homework due before class every day:
- Pre-Class:
- Designed to get you to read the chapter before I lecture.
- Fairly easy.
- Post-Class:
- Designed to tell you if you understood the material.
- A bit harder.

Units and Significant Figures

Units

- We will use SI (Systeme International) units
- Length
- Meter [m] = 3.281 feet
- Time
- Second [s]
- Mass
- Kilogram [kg] = 1/14.593903 slugs
- Gravitational force on $1 \mathrm{~kg}=2.20462 \mathrm{lbs}$

Unit prefixes

Length

1 nanometer $=1 \mathrm{~nm}=10^{-9} \mathrm{~m}$ (a few times the size of the largest atom)
1 micrometer $=1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}$ (size of some bacteria and living cells)
1 millimeter $=1 \mathrm{~mm}=10^{-3} \mathrm{~m}$ (diameter of the point of a ballpoint pen)
1 centimeter $=1 \mathrm{~cm}=10^{-2} \mathrm{~m}$ (diameter of your little finger)
1 kilometer $=1 \mathrm{~km}=10^{3} \mathrm{~m}$ (a 10 -minute walk)

Mass

1 microgram $=1 \mu \mathrm{~g}=10^{-6} \mathrm{~g}=10^{-9} \mathrm{~kg}$ (mass of a very small dust particle)
1 milligram $=1 \mathrm{mg}=10^{-3} \mathrm{~g}=10^{-6} \mathrm{~kg}$ (mass of a grain of salt)
1 gram $\quad=1 \mathrm{~g}=10^{-3} \mathrm{~kg}$ (mass of a paper clip)

Time

1 nanosecond $=1 \mathrm{~ns}=10^{-9} \mathrm{~s}$ (time for light to travel 0.3 m)
1 microsecond $=1 \mu \mathrm{~s}=10^{-6} \mathrm{~s}$ (time for an orbiting space shuttle to travel 8 mm)
1 millisecond $=1 \mathrm{~ms}=10^{-3} \mathrm{~s}$ (time for sound to travel 0.35 m)
I work at length scales of femtometer $=1 \mathrm{fm}=10^{-15} \mathrm{~m}$

Unit Consistency

- Besides being an essential part of any answer, units can help you to make sure that your answer is correct:
- What is the equation for a one dimensional trajectory with constant acceleration?
$-x(t)=x_{0}+v_{0} t^{2}+1 / 2 a t ?$
$-[\mathrm{m}]=[\mathrm{m}]+[\mathrm{m} / \mathrm{s}]\left[\mathrm{s}^{2}\right]+\left[\mathrm{m} / \mathrm{s}^{2}\right][\mathrm{s}]$

Uncertainties

- When making a measurement, results are NEVER exact.
- A visitor to the Royal Tyrrell Museum was admiring a Tyrannosaurus fossil, and asked a nearby museum employee how old it was. "That skeleton's sixty-five million and three years, two months and eighteen days old," the employee replied. "How can you know it that well?" she asked. "Well, when I started working here, I asked a scientist the exact same question, and he said it was sixty-five million years old - and that was three years, two months and eighteen days ago."
- We can express the uncertainty in a measurement explicitly by:
- The desk is $2 m+/-0.1 \mathrm{~m}$ long.
- The desk is $2 m+/-5 \%$ long.

Significant Figures

- Or, we can express them implicitly by using the correct number of significant figures:
- A measurement is made with the result 2.94 cm .
- The implicit uncertainty is 0.01 cm .
- A measurement is made with the result 0.0054 s
- The implicit uncertainty is 0.0001 s .
- Leading and sometimes trailing zeros are not considered significant:
- 0.0054 has only two significant figures.
- 78100 has only three significant figures.
- 78100.00 has seven significant figures.
- It is easier to see how many significant figures there are when written in scientific notation:
$-0.0054=5.4 \times 10^{-3}$
$-78100=7.81 \times 10^{3}$
$-78100.00=7.810000 \times 10^{3}$

Significant Figures

- Calculations using numbers with uncertainties must correctly propagate those uncertainties:
$-15.0 / 5.0000=3.00$, not 3.0000 or 3.0
$-100.00+5.0=105.0$
Mathematical Operation
Multiplication or division

Addition or subtraction

Significant Figures in Result
No more than in the number with the fewest significant figures
Example: $(0.745 \times 2.2) / 3.885=0.42$
Example: $\left(1.32578 \times 10^{7}\right) \times\left(4.11 \times 10^{-3}\right)=5.45 \times 10^{4}$
Determined by the number with the largest uncertainty (i.e., the fewest digits to the right of the decimal point)
Example: $27.153+138.2-11.74=153.6$

Note: In this book we will usually give numerical values with three significant figures.

Vectors and Trigonometry Review

Scalars and Vectors

- A scalar only has a magnitude
- Number of apples
- Size of desk
- Distance to Santa Fe
- A vector has a magnitude and a direction
- If someone ask you how to get to Santa Fe from Albuquerque, your answer wouldn't be "Go sixty miles."

Vector

Vectors

- Represented by an arrow:

- The length of the arrow represents the magnitude.
- The orientation represents the direction.
- In which direction is the following arrow?

$$
\uparrow \vec{A}
$$

- What is its length?

Coordinate Systems

- A coordinate system is a reference for both direction and scale.
- Axes are perpendicular.
- Examples:

Coordinate Systems

- In many cases, we generalize the directions using variable names.
- So, instead of up and to the right, we can use the names " y " and " x "
- This makes equations much more manageable...

Coordinate Systems

- Vectors can be drawn on a coordinate system in an infinite number of ways:

All of these vectors are the same - vectors ONLY have magnitude and direction!

Coordinate Systems

- However, you must remember that a vector is only defined uniquely when a coordinate system is defined, so vectors that are defined with different coordinate systems may LOOK the same but be different:

Components of Vectors

- Once we have a coordinate system as a reference, we can break down a vector in terms of its length along the direction of the coordinates:

Length of Vectors

- The length of a vector can be found using Pythagorean theorem:

Direction of Vectors

- The direction of a vector can be defined any way you choose relative to a coordinate system, but there is a conventional choice:
- Angle from the positive x-axis with a positive angle in the counter-clockwise direction.

