Lecture 23

(Gravitation, Potential Energy and Gauss's Law; Kepler's Laws) Physics 160-02 Spring 2017
 Douglas Fields

Gravitational Force

- Up until now, we have said that the gravitational force on a mass m is just mg .
- But remember that we always said that there is a condition on this, that we are at the earth's surface.
- What is the general form of the force due to gravity?

$$
F_{G}=G \frac{m_{1} m_{2}}{r^{2}}
$$

- That is, two particles with mass will attract each other proportionately to their masses and inverse proportionately to the square of the distance between them
- The proportionality constant, G, is known as the universal gravitational constant.

Gravitational Force

- The gravitational force is very weak (?)...
- For two masses each of 1 kg , separated by 1 m :

$$
F_{G}=G \frac{m_{1} m_{2}}{r^{2}}=G \frac{1 \mathrm{~kg} \cdot 1 \mathrm{~kg}}{(1 \mathrm{~m})^{2}}=6.6742 \times 10^{-11} \mathrm{~N}
$$

- That is, the proportionately constant, $\mathrm{G}=6.6742 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$.
- So why is it that we feel such a strong force on us?
- The earth's radius is $6.37 \times 10^{6} \mathrm{~m}$!
- But, the earth's mass $=5.98 \times 10^{24} \mathrm{~kg}$!!

Why $1 / r^{2}$?

- Consider water flowing out of a hole in a level surface, and spreading out evenly along the surface...

Why $1 / r^{2}$?

- Now, in three dimensions, we examine the flux passing through the surface of a sphere...

Superposition of Force

- Remember that if two (or more) forces are acting on a body, the net force is just the (vector) sum of all the forces:

- The same is true for gravitational forces.

Example

$$
\begin{aligned}
F_{1} & =\frac{\left[\begin{array}{c}
\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right) \\
\times\left(8.00 \times 10^{30} \mathrm{~kg}\right)\left(1.00 \times 10^{30} \mathrm{~kg}\right)
\end{array}\right]}{\left(2.00 \times 10^{12} \mathrm{~m}\right)^{2}+\left(2.00 \times 10^{12} \mathrm{~m}\right)^{2}} \\
& =6.67 \times 10^{25} \mathrm{~N} \\
F_{2} & =\frac{\left[\begin{array}{c}
\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right) \\
\times\left(8.00 \times 10^{30} \mathrm{~kg}\right)\left(1.00 \times 10^{30} \mathrm{~kg}\right)
\end{array}\right]}{\left(2.00 \times 10^{12} \mathrm{~m}\right)^{2}} \\
& =1.33 \times 10^{26} \mathrm{~N} \\
F_{1 x} & =\left(6.67 \times 10^{25} \mathrm{~N}\right)\left(\cos 45^{\circ}\right)=4.72 \times 10^{25} \mathrm{~N} \\
F_{1 y} & =\left(6.67 \times 10^{25} \mathrm{~N}\right)\left(\sin 45^{\circ}\right)=4.72 \times 10^{25} \mathrm{~N} \\
F_{2 x} & =1.33 \times 10^{26} \mathrm{~N} \\
F_{2 y} & =0 \quad F=\sqrt{F_{x}^{2}+F_{y}^{2}}=\sqrt{\left(1.81 \times 10^{26} \mathrm{Ng}\right)^{2}+\left(4.72 \times 10^{25} \mathrm{~N}\right)^{2}} \\
F_{x} & =F_{1 x}+F_{2 x}=1.81 \times 10^{26} \mathrm{~N} \quad=1.87 \times 10^{26} \mathrm{~N} \\
F_{y} & =F_{1 y}+F_{2 y}=4.72 \times 10^{25} \mathrm{~N} \quad \theta=\arctan \frac{F_{y}}{F_{x}}=\arctan \frac{4.72 \times 10^{25} \mathrm{~N}}{1.81 \times 10^{26} \mathrm{~N}}=14.6^{\circ}
\end{aligned}
$$

Spherically Symmetric Bodies

- We can do the same thing for continuous distributions of mass.

Spherically Symmetric Bodies

- For a spherically symmetric distribution, the net force is pointed to the center, and has the magnitude as if all the mass was located at the center:

$$
F_{G}=G \frac{m_{1} m_{2}}{r^{2}}
$$

Search For Oil

- If the mass is not spherically symmetric, this is no longer the case:
- This can be used to look for non-uniform densities in the earth's crust (oil, uranium, etc.).

Shell Theorem

$$
F_{G}=G \frac{m_{1} m_{2}}{r^{2}}
$$

$$
F_{N e t}=0!\text { inside a shell. }
$$

Weight and "Little g"

- So, what is the force due to gravity on a mass m , at the surface of the earth?

$$
F_{G}=G \frac{m_{E} m}{r_{E}^{2}}=\frac{G m_{E}}{r_{E}^{2}} m=\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(5.98 \times 10^{44} \mathrm{~kg}\right)}{\left(6.38 \times 10^{6} \mathrm{~m}\right)^{2}} m=\left(9.8 \frac{\mathrm{~N}}{\mathrm{~kg}}\right) \mathrm{m}
$$

- Recognize the factor in front of the object's mass?
- Also notice that as the object goes farther from the earth's center, the force of gravity from the earth gets less...

Astronaut's Weight

Gravitational Potential Energy

- Remember that we defined the gravitational potential energy as being the work done by gravity when an object is moved from one point to another:

$$
\Delta U_{g}=-W_{g}=-\int_{1}^{2} \vec{F}_{g} \cdot d \vec{r}
$$

Near the earth's surface, you can take the force to be constant = mg , so the change in potential is just $\mathrm{mg}\left(\mathrm{r}_{2}-\mathrm{r}_{1}\right)=\mathrm{mgh}$

Gravitational Potential Energy

- Now, we have a force that varies with distance:

$$
\Delta U_{g}=-W_{g}=\int_{r_{1}}^{r_{1}} \frac{G m_{1} m_{2}}{r^{2}} d r=\frac{G m_{1} m_{2}}{r_{1}}-\frac{G m_{1} m_{2}}{r_{2}}
$$

- If we define the zero of the potential now to be at infinity, we can set values for the potential:

$$
U_{g}=-\frac{G m_{1} m_{2}}{r}
$$

Gravitational Potential Energy

Escape Velocity

From Conservation of energy:

$$
\frac{1}{2} m v_{1}^{2}+\left(-\frac{G m_{\mathrm{E}} m}{R_{\mathrm{E}}}\right)=0+0
$$

$$
\begin{aligned}
v_{1} & =\sqrt{\frac{2 G m_{\mathrm{E}}}{R_{\mathrm{E}}}} \\
& =\sqrt{\frac{2\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(5.97 \times 10^{24} \mathrm{~kg}\right)}{6.38 \times 10^{6} \mathrm{~m}}} \\
& =1.12 \times 10^{4} \mathrm{~m} / \mathrm{s}(=40,200 \mathrm{~km} / \mathrm{h}=25,000 \mathrm{mi} / \mathrm{h})
\end{aligned}
$$

Gravitational Potential Energy From More Than One Object

- Since potential energy is just a scalar, it adds just like any other quantity adds:

$$
U_{g 1}=-\frac{G m_{1} m_{2}}{r_{12}}-\frac{G m_{1} m_{3}}{r_{13}}-\frac{G m_{1} m_{4}}{r_{14}} \ldots
$$

Motion of Satellites

Motion of Satellites (Circular Orbit)

$$
\begin{aligned}
& \sum \vec{F}=m \vec{a} \Rightarrow \\
& \frac{G m_{E} m}{r^{2}}=m \frac{v^{2}}{r} \Rightarrow \\
& v=\sqrt{\frac{G m_{E}}{r}}
\end{aligned}
$$

Kepler's Laws

1. Each planet moves in an elliptical orbit, with the sun at one focus of the ellipse.
2. A line from the sun to a given planet sweeps out equal areas in equal times.
3. The periods of the planets are proportional to the $\frac{3}{2}$ powers of the major axis lengths of their orbits.

A planet P follows an elliptical orbit.

There is nothing at
the other focus.

Kepler's Laws

1. Each planet moves in an elliptical orbit, with the sun at one focus of the ellipse.
2. A line from the sun to a given planet sweeps out equal areas in equal times.
3. The periods of the planets are proportional to the $\frac{3}{2}$ powers of the major axis lengths of their orbits.

Kepler's Laws

But, since the force acts along the line r, L is conserved, so $d A / d t$ is constant!

Kepler's Laws

1. Each planet moves in an elliptical orbit, with the sun at one focus of the ellipse.
2. A line from the sun to a given planet sweeps out equal areas in equal times.
3. The periods of the planets are proportional to the $\frac{3}{2}$ powers of the major axis lengths of their orbits.

A planet P follows an elliptical orbit.

$$
T=\frac{2 \pi a^{3 / 2}}{\sqrt{G m_{S}}}
$$

There is nothing at
the other focus.

Einstein's Gravity

- General relativity is a metric theory of gravitation. At its core are Einstein's equations, which describe the relation between the geometry of a fourdimensional, semi-Riemannian manifold representing spacetime on the one hand, and the energy-momentum contained in that spacetime on the other. ${ }^{[31]}$ Phenomena that in classical mechanics are ascribed to the action of the force of gravity (such as free-fall, orbital motion, and spacecraft trajectories), correspond to inertial motion within a curved geometry of spacetime in general relativity; there is no gravitational force deflecting objects from their natural, straight paths. Instead, gravity corresponds to changes in the properties of space and time, which in turn changes the straightest-possible paths that objects will naturally follow. ${ }^{[32]}$ The curvature is, in turn, caused by the energy-momentum of matter. Paraphrasing the relativist John Archibald Wheeler, spacetime tells matter how to move; matter tells spacetime how to curve. ${ }^{[33]}$

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+g_{\mu \nu} \Lambda=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

Space Time Curvature

Gravity Affects Light Too!

- Light is also affected by gravity and can get pulled into an massive object.

Gravitational Lensing (simulation)

Gravitational Lensing

Gravitational Lens G2237+0305

Black Holes

- Remember that we discussed the escape velocity of an object from a massive body (planet, sun, etc.).

$$
v=\sqrt{\frac{2 G m}{R}}
$$

- We will learn later that light has a characteristic velocity, $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
- What happens when the mass/radius of an object becomes so large that v>c?
- It's called a black hole.

Stars Around our Black Hole

- How do we know black holes exist?
- Look for objects that have orbits which require massive objects.

$$
T=\frac{2 \pi a^{3 / 2}}{\sqrt{G m}}
$$

$M=3.7$ million times the mass of the sun!!!

Dark Matter

Dark Matter

Dark Energy

