$H W * 11$ Solutions
27.1

$$
\begin{aligned}
& \text { a0) } \vec{F}=q \vec{v} \times \vec{B} \\
& \begin{aligned}
\vec{F}= & \left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
0 & -v & 0 \\
B_{x} & B_{y} & B_{z}
\end{array}\right|=\left(-q v B_{z}-0\right) \hat{\imath}-(0-0) \hat{\jmath}+\left(0+q v B_{x}\right) \hat{k} \\
= & =q v B_{x} \hat{\imath}-B_{y} \hat{\jmath}+B_{z} \hat{\imath}
\end{aligned}
\end{aligned}
$$

b.) $q<0 \quad B_{x}=B_{y}=B_{z}>0$

$$
\left.\begin{array}{rl}
\vec{F}=|q| & \left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
0 & v & 0 \\
B_{x} & B_{x} & B_{x}
\end{array}\right|=|q| \vee B_{x} \hat{\imath}-|q| \vee B_{x} \hat{k}
\end{array}\right] \begin{aligned}
|\vec{F}| & =\sqrt{\left(|q| \vee B_{x}\right)^{2}+\left(\mid q\left(v B_{x}\right)^{2}\right.}=\sqrt{2\left(q \mid v B_{x}\right)^{2}} \\
& =\sqrt{2}|q| \vee B_{x}
\end{aligned}
$$

$$
\begin{aligned}
I=\frac{q}{T}=q f & =\frac{q \omega}{2 \pi} \\
\tau & =\mu B \sin \theta \quad \mu=I A \\
& \Longrightarrow \tau=I A B \\
& =\left(\frac{q \omega}{2 \pi}\right) \pi r^{2} B \\
& =\frac{9 \omega}{2} r^{2} B
\end{aligned}
$$

27.3

$$
\vec{B}=\frac{B_{0} x}{L} \hat{\imath}+\frac{B_{0} y}{L} \hat{\jmath}
$$

a) $F=\int I d \vec{l} \times \vec{B}$
(1) $F_{1}=\frac{I B_{0}}{L} \int_{0}^{L}\left(d y j x\left(x^{\circ}+y \hat{j}\right)=0\right.$
(2) $F_{2}=\frac{I B_{0}}{L} \int_{0}^{L} d x \hat{\imath} \times(x \hat{\imath}+\hat{y} \hat{\jmath} \hat{\jmath})=\frac{I P L}{L} L \times\left.\right|_{0} ^{L} \hat{k}=I B_{0} L \hat{k}$
(3) $F_{3}=\frac{I B_{0}}{L} \int_{L}^{a}-d y \hat{\jmath} \times\left(\hat{y}^{L}+y \hat{\jmath}\right)=-\left.\frac{I B_{0}}{L} L y\right|_{0} ^{L} \hat{k}=-I B_{0} L^{i}$
(4) $F_{4}=\frac{I B_{0}}{L} \int_{L}^{0}-d x \hat{i} \times\left(x \hat{i}+y_{j}^{0}\right)=0$
b)

$$
\begin{aligned}
& \vec{\tau}=\vec{r} \times \vec{F} \\
& \vec{\tau}_{1}=\vec{\tau}_{4}=0 \\
& \vec{\tau}_{2}=L \hat{\jmath} \times I B_{0} L \hat{k}=I B_{0} L^{2} \hat{\imath} \\
& \vec{\tau}_{3}=\int_{0}^{L} \times d F=-\int_{0}^{L} y \hat{\jmath} \times I B_{0} d y \hat{k}=+\left.\frac{I B_{0}}{2} y^{2}\right|_{0} ^{L} \hbar=+\frac{1}{2} I B_{0} L^{2} \hat{\imath} \\
& \vec{\tau}_{n+t}=I B_{0} L^{2} \hat{\imath}+\frac{1}{2} I B_{0} L^{2} I=\frac{3}{2} I B_{0} L^{2} \hat{\imath}
\end{aligned}
$$

$$
\text { c.) } \left.\begin{array}{rl}
\vec{\tau}=\vec{r} \times \vec{F} \\
\bar{\tau}_{1} & =\vec{\tau}_{4}=0 \\
\vec{\tau}_{2} & =\int r \times d F \cdot \int_{0}^{L} \times \hat{\imath} \times I B_{0} d x \hat{k}=-\left.\frac{1}{2} I B_{0} x^{2}\right|_{0} ^{L} \hat{j}=-\frac{1}{2} I B_{0} L^{2} \hat{\jmath} \\
\vec{\tau}_{3} & =L \hat{\imath} \times-I B_{0} \hat{k}
\end{array}=I B_{0} L^{2} \hat{\jmath}\right\}
$$

