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Review of Power in Waves

Let’s examine a wave moving to the right on a string.

At point a, the force from the string to the left, F, can
be broken down into the horizontal and vertical
components using the slope of the string:

F (1) =—F 200 (x.1)

And then the power at a is justxgiven by the force
times the velocity of the piece of string at that point:
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Then, y(x,t) = Acos(kx — a)t),

M = —kAsin (kx — wt) Y (a:’t) = wAsin (kx — o)

P(x,t) =—-FkoA’ sin® (kx — ot)

And the pgwer is given by:

Thus, the time averaged power is given by:

P = %Fka)Az

Avg
Notice that it depends on the amplitude squared



Power in an EM Wave

* Let’s review what we know about the energy
stored in fields:
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u, =—¢g,E>, u,=——~B"
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* So, at any point in the electromagnetic wave,
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Power in an EM Wave

) B Ut th iS iS t h € ene rgy d ens ity at At time dt, the \‘()]Lm‘]e l‘)t‘l\\'CCl? the stationary
a localized point in space. We [
want to describe how this

energy moves with the wave.

* Let’s examine the energy (dU)
in a plane wave that passes
through a certain area (A) P —_
within a certain time (dt). s |

Stationary \B/

dU =udV =ud(cdt) = — SR o S5
dU = (&,E* ) Acdt
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Poynting Vector

dU = (&,E* ) Acdt

. At time dt, the volume between the stationary
NOWI |Et us defl ne the energy per plane and the wave front contains an amount
unit time’ per unit ared as: oi‘clcclrmnugng‘.lic energy dU = uAc dt.
.v ""
1 dU >
=~ =g E
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Notice that it scales with the square
of the field (wave amplitude).

Now, just for fun, let’s rewrite this /o\ A

Poynting
vector

using E = cB: 1 &
S:CZSOEB:—EB . |
. Ho | <\/
And put it in vector form to denote Stationary " \wave front at time

plane dt later

the direction of energy transmission:

= 1 o = .
S=—FExB Poynting Vector
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Poynting Vector

* Remember, the Poynting vector represents the energy
per time per unit area instantaneously passing through
an area at a particular point in space.

g __energy _ power

time - area area

e So, if we want to know the entire instantaneous power
output from a source, we have to integrate the Poynting
vector over a closed surface containing the source:

P=§5-dA

 We'll return to this in a moment, but let’s first get rid of
that annoying term: instantaneous.



Average Power (per unit area)

The time average of the Poynting vector will depend on
the its time dependence, and over what length of time
you average.

For instance, look at the following pulse:

S| N

If we integrate over the time from when the pulse just
reaches r, until the maximum reaches r_, we will get one
answer.

If we integrate over all time, we will get an answer that
will approach zero...

So, when we speak of average power, we either have to
be precise in our description of the time integration, or...
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Average Power (per unit area)

* Assume a never-ending sinusoidal plane

waVve. .
(x,2)x B(x,1)

| JE . sin (hox - a)t)] [/QBMaX sin(kx—a)t)]

= — By Byt Sin° (kx — o01)

* Then, because the average of sin’ is %,

=[Sl 51 T

* Where, | is the |nten5|ty of the EM wave.



Example

* Consider a source of EM waves, say a light
bulb that puts out 100W spread equally in
all directions. What is the value of the
intensity of light 10m from the bulb?

I 1111)/ A 1/
A(r) _471(1Om)2 dam?

* But remember that the intensity is
proportional to the amplitude squared:

=[S = 5 BB, = 2 = Sl

* So, as pointed out earller, N
for spherical waves. £(r)| ==

Avg
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Electromagnetic Momentum Flow

* Electromagnetic waves also carry

momentum’, with a momentum density:
dp EB S
dv TN ¢
* And you can then consider a momentum
flow rate (momentum passing through unit

area in a period of time dt):

* Since gy = Acdt

*see http://farside.ph.utexas.edu/teaching/em/lectures/node90.html for a discussion of how we know this.



http://farside.ph.utexas.edu/teaching/em/lectures/node90.html

Radiation Pressure

 And the average momentum flow is just:
<ldp>:SAvg _£

A dt C C
* Now, remember Newton’s second law:
ﬁ 4
F=

d
* And since pressure is just force per area,

Laph\_[F)\_ _Sae 1
(55) - (5)tpa= 22

* If the wave is reflected, it’s twice this.

)



Example

m Power and pressure from sunlight

An carth-orbiting satellite has solar energy—collecting panels with
a total area of 4.0 m® (Fig. 32.21). If the sun’s radiation is perpen-
dicular to the panels and is completely absorbed, find the average
solar power absorbed and the average radiation-pressure force.

32.21 Solar pancls on a satellite.

Sun sensor <

S
(to keep panels \ /
facing lM<un) 7

l Solar panels

The intensity / (power per unit area) is 1.4 X 10° W/m?,




32.21 Solar pancls on a satellite.

Sun sensor -
S ’
| X a I I I e (to keep panels \ /
facing lhg<un) P\ f:',' 7

Solar panels

The intensity / (power per unit area) is 1.4 X 10° W/ m”’.

1 14x10°W/m’
Prai = 2773 0x10° m/s

=4.7x10"°Pa



Reflections at Conducting Surfaces

* What happens when a
transverse matter wave strikes a
fixed boundary?

e The wave is reflected and
inverted.

* A similar thing happens when an
EM wave strikes a conducting
boundary...




Reflections at Conducting Surfaces

The electric field of the wave
causes charges to move on the

surface of the conductor. Perfect conductor

The net effect of their motion is y x = A .
to keep the electric field inside g nodal plane of E.
the conductor zero. g Al Re e
The moving charges also cause a |

magnetic field.

Hence, these charges create an
electromagnetic wave which is
inverted from the original and ot \u
travels in the opposite direction, * = 3j4:

antinodal plane of E
away from the conductor. odal plani B




Standing EM Waves

The wave is traveling in the
B negative x-direction, the same
as the direction of £ X B.

e Take the incoming wave (moving in the —x
direction) as:

-7

E, (x,1)= jEyy cos(ke+at), B, (x,t)=—kB,,, cos(kx+at)

B E
* Then the reflected wave must be given by: £ -comporent only
E., (%) = =By cos(kx—at), B, (x,t)=—kByy cos(kx — o)

* The resulting superposition of these two is:

Perfect conductor

x =X\ "
nodal plane of E
antinodal plane of B

X,t)+ E, (x,1) = jEyy,, | cos(kx + wt) — cos(kx — wt) |,
x,t)+ B, (x,t) = kB, [ cos (kx + wt) + cos (kx — o) |
* Or, simplifying:

li, (x,1) = —]A'2EMaX sin (kx)sin (),

B,, (x,t) = —k2B,,,, cos(kx)cos (o) ;I;ngglﬂinpeliflzofﬁ



Standing EM Waves

There are then nodes in both the electric
field at:

xzo,i,l,ﬁ...
2 2

And in the B-field at:
A 34 52

X=—,—,—...

4’47 4
Note also that the electric and magnetic
field are out of phase in time

E,, (x,t) = = 2By, sin (kx)sin (wt),

B,, (x,t) = —k2B,,,, cos(kx)cos (o)
When wt is such that the electric field is
zero everywhere, the magnetic field is
maximum everywhere!

Perfect conductor

x=A "
nodal plane of E
antinodal plane of B

nodal plane of B
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B is blue, E is red



Standing EM Waves

 What if we put in another
conducting plane, we createan
electromagnetic cavity that will = X[
sustain a resonance for EM |
waves of wavelength:

2 =L (n=123.)

n
n 27




