Lecture 13 (Rays, Reflection and Refraction)

Physics 2130-01 Spring 2020 Douglas Fields https://phet.colorado.edu/sims/blackbody-spectrum/blackbody-spectrum_en.html

https://phet.colorado.edu/en/simulation/leg acy/discharge-lamps

https://phet.colorado.edu/en/simulation/leg acy/radio-waves

https://phet.colorado.edu/sims/html/bendin g-light/latest/bending-light_en.html

Sources

- The fundamental source of electromagnetic radiation is accelerated charges.
- The total power radiated goes as the charge times the acceleration squared:

$$P = \frac{2}{3} \frac{q^2 a^2}{4\pi \varepsilon_0 c^3} = \frac{q^2 a^2}{6\pi \varepsilon_0 c^3}$$
 (SI units)

http://www.tapir.caltech.edu/~teviet/Waves/field_a.gif

Sources – Thermal Radiation

- As mentioned earlier, EM waves are caused by accelerated charges. But what are the sources of acceleration?
- Remember from thermodynamics that temperature is a measure of the average kinetic energy of the constituent particles.
- So, higher temperatures mean higher (average) kinetic energies (with some distribution).
- As these constituents move, they can suffer collisions, and if they are charged, these collisions represent accelerated charged particles.
- There is then a distribution of wavelengths of EM waves emitted.
- The hotter the object, the more shorter wavelengths (higher frequency) are emitted.

Sources – Atomic transitions

- When electrons bound in an atom make transitions from one state to a lower energy state, they emit light (photons).
- This can happen through chemical reactions, induced emission (lasers), or by exciting the atoms of a gas by passing a current through it.
- In all cases, the electrons go from a higher energy state to a lower one through the emission of light.

Sources – Transmitters

- Electrons in a conductor can be accelerated by an applied electric field, thus emitting EM waves.
- This is the idea behind radio and microwave transmitters.
- If you have a circulating beam of electrons, then they are undergoing acceleration.
- This causes the emission of synchrotron radiation, and is the idea behind Brookhaven National Lab's National Synchrotron Light Source II.

Waves and Wave fronts

- Let's first consider a point source of waves.
- Doesn't matter what type of waves (sound, light...).
- We can visualize the expanding (in 3D) waves as a series of concentric shells, each growing out in space.
- We call these wave fronts, although they don't (have to) represent the "front" of the wave.

and rarefactions of air)

Waves and Wave fronts

- Now, since we have to often work in two dimensions when we draw or write, lets take a cross-section of these shells (I'm showing only a quarter of a cross-section), and draw the wave fronts as arcs of the circle that would be represented by a complete wave front cross-section.
- Now, if we draw arrows from the source in the direction of the wave travel, notice that these "rays" are everywhere perpendicular to the wave fronts.
- These rays will provide us with a very useful representation of the waves when we deal with optics.
- If we zoom in on the circled area...

sound waves (alternating compressions and rarefactions of air)

Waves and Wave fronts

- We get an approximation of a plane wave.
- In this case, the rays are all parallel to one another (in the approximation).
- Don't confuse rays with photons or something!
- Rays don't really exist, they are just a way for us to visualize the direction of the wave motion.
- Think of them in the same way we think of wind-tunnel lines of fluid flow.
- Their spacing is unimportant, and their number is arbitrary.

When wave fronts are planar, the rays are perpendicular to the wave fronts and parallel to each other.

Reflection and Refraction

- Now, we are going to discuss reflection and refraction (transmission) of EM waves at the interface between two materials.
- [I'd rather discuss Huygens's Principle now, but I will keep with the order of the book.]
- Remember what we learned about mechanical waves at boundaries (using the wave table).
 - At boundaries between two materials with different wave speeds (determined by the index of refraction), there will be both reflection and transmission.
- But in 3D materials where the wave fronts don't necessarily strike the interface head-on, what happens to the waves?

(b) The waves in the outside air and glass represented by rays

© 2012 Pearson Education, Inc.

(c) The representation simplified to show just one set of rays

© 2012 Pearson Education, Inc.

Laws of Reflection and Refraction

- For the time being, let's just give the experimental results:
 - The incident, reflected and refracted rays and the normal to the surface all lie in the same plane.
 - The angle of reflection is equal to the angle of incidence for all wavelengths and for any pair of materials.

$$\theta_r = \theta_a$$

 For monochromatic light, and for a given pair of materials, a and b:

$$n_a \sin \theta_a = n_b \sin \theta_b$$

1. The incident, reflected, and refracted rays and the normal to the surface all lie in the same plane.

Angles θ_a , θ_b , and θ_r are measured from the normal.

Incident ray

2. $\theta_r = \theta_a$ Reflected ray

Material aMaterial b

3. When a monochromatic light ray crosses the interface between two given materials a and b, the angles θ_a and θ_b are related to the indexes of refraction of a and b by

$$\frac{\sin \theta_a}{\sin \theta_b} = \frac{n_b}{n_a}$$

2012 Pearson Education, Inc

Laws of Reflection and Refraction

$$\theta_r = \theta_a$$

 $n_a \sin \theta_a = n_b \sin \theta_b$

- Three examples.
 - Material b has a larger index of refraction:

Material a has a larger index of refraction:

The angle of incidence is zero

(a) A ray entering a material of *larger* index of refraction bends *toward* the normal.

(b) A ray entering a material of *smaller* index of refraction bends *away from* the normal.

(c) A ray oriented along the normal does not bend, regardless of the materials.

© 2012 Pearson Education, Inc.

Laws of Reflection and Refraction

- These Laws (what used to be called Snell's Laws) can account for many phenomena we see daily.
- The concept isn't difficult, but sometimes is confusing.
- Must keep in mind how the angles are defined!

Examples

- Remember that it is the wave velocity (not the frequency of oscillations) that change in going from one medium into another.
- So, since $\lambda_0 = \frac{v_0}{f}$ and $\lambda = \frac{v}{f}$.
- Then with $v = \frac{v_0}{n}$, we get $\lambda = \frac{\lambda_0}{n}$ in the new medium.

Angle of refraction

Indices of Refraction

- Vacuum: n = 1
- Air at STP: n = 1.0003 ~ 1
- Acrylic?

Table 33.1 Index of Refraction for Yellow Sodium Light, $\lambda_0 = 589$ nm

Substance	Index of Refraction, <i>n</i>
Solids	
Ice (H_2O)	1.309
Fluorite (CaF ₂)	1.434
Polystyrene	1.49
Rock salt (NaCl)	1.544
Quartz (SiO ₂)	1.544
Zircon $(ZrO_2 \cdot SiO_2)$	1.923
Diamond (C)	2.417
Fabulite (SrTiO ₃)	2.409
Rutile (TiO ₂)	2.62
Glasses (typical values)	
Crown	1.52
Light flint	1.58
Medium flint	1.62
Dense flint	1.66
Lanthanum flint	1.80
Liquids at 20°C	
Methanol (CH ₃ OH)	1.329
Water (H ₂ O)	1.333
Ethanol (C_2H_5OH)	1.36
Carbon tetrachloride (CCl ₄)	1.460
Turpentine	1.472
Glycerine	1.473
Benzene	1.501
Carbon disulfide (CS ₂)	1.628

© 2012 Pearson Education. Inc.