Lecture 14 (Total Internal Reflection and Dispersion)

Physics 2310-01 Fall 2019
Douglas Fields

https://phet.colorado.edu/sims/html/bending-light/latest/bending-light_en.html

Total Internal Reflection

- An interesting thing happens when light goes from a higher to a lower index of refraction...
- As the angle of incidence is increased, the refracted light is bent more and more parallel to the surface.
- At an angle (called the critical angle), the light is refracted completely parallel to the interface.

Total Internal Reflection

- Notice that this can only happen when $n_a > n_b$
- What the previous picture didn't show is that there is also reflection at the other angles!
- The fraction that is reflected increases up to the critical angle, and then is 100%.

$$\sin \theta_{critical} = \frac{n_b}{n_a}$$

(a) Total internal reflection

Total internal reflection occurs only if $n_b < n_a$.

© 2012 Pearson Education, Inc.

See?

(b) Total internal reflection demonstrated with a laser, mirrors, and water in a fishbowl

Uses

Fiber Optics

• Porro Prisms

Endoscopes

• Diamonds...

Exercise

• A porro prism made of a material with index of refraction n_p **just barely** gives *total* internal reflection when immersed in water. What is the index of refraction n_p ?

 $n_{H_2O} = 1.333$

Exercise

• A porro prism made of a material with index of refraction n_p just barely gives *total* internal reflection when immersed in water. What is the index of refraction n_p ?

$$\sin \theta_c = \frac{n_b}{n_c}$$

$$\sin 45^\circ = \frac{1.333}{n_a} \Longrightarrow$$

$$n_a = \frac{1.333}{\sin 45^\circ} = \frac{1.333}{0.707} = 1.886$$

$$n_{H_2O} = 1.333$$

Dispersion

- Until now, we have considered that the index of refraction of a material is independent of the wavelength of the light.
- The different speeds of light in materials is caused by moving charges in the material absorbing and reemitting light at the same frequency but with a slight change in phase.
- The change in phase can also be wavelength dependent, causing dispersion.

Prisms

- Non-monochromatic light (e.g., white light) can be separated into its components through the use of a prism, which relies on dispersion.
- Shorter wavelengths see a higher index of refraction and are therefore refracted more than longer wavelengths.
- One can use this to analyze the color spectrum of a source, but there are better methods to do that which we will discuss later.

Got to love NM!

Rainbows

- Rainbows are another excellent example of dispersion.
- Without dispersion:

(b) The paths of light rays entering the upper half of a raindrop

(a) A double rainbow

@ 2012 Pearson Education, Inc.

Rainbows

 Rainbows are another excellent example of dispersion.

(d) A primary rainbow is formed by rays that undergo two refractions and one internal reflection. The angle Δ is larger for red light than for violet.

(a) A double rainbow

© 2012 Pearson Education, Inc.

Dispersion in Fiber Optics

- Okay, now let's think about dispersion in fiber optics.
- How do you send a signal down a fiber optic cable?
- A: a laser. But that is monochromatic, so no dispersion, right?
- But you have to send information, so the light beam must be modulated (amplitude must change with time) to carry that information.

Dispersion in Fiber Optics

- Once you modulate the amplitude, you no longer have a sinusoidal wave.
- That wave (let's take a simple square-wave function) is now a combination of frequencies, which can be determined by a Fourier transform of the square-wave.
- Each of these frequencies travel down the fiber optic at different velocities, determined by the dispersive properties of the glass.
- This limits the distance that signals can travel without re-modulation.

$$\phi(t) = \sum_{n=1}^{\infty} c_n \varphi_n(t)$$

$$\phi_{\text{square}}(t) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2\pi(2n-1)ft)}{2n-1}.$$

Colors

