Lecture 18 (Geometric Optics II Thin Lenses)

Physics 2310-01 Spring 2020 Douglas Fields https://phet.colorado.edu/sims/geometric-o ptics/geometric-optics_en.html

Thin Lenses

(a)

- A very commonly used optical device is the thin lens.
- The term "thin" is, of course, qualitative, and just means in this sense that we can ignore the thickness of the lens when ray tracing.
- Practically speaking, it means we trace the rays to the center plane of the lens and then refract them for both surfaces.
- We didn't cover refraction from spherical surfaces, but will gloss over some aspects...

Converging lenses

Thin Lenses

- The simplest thin lenses have spherical surfaces and can be characterized by the following:
 - Center of curvatures for both surfaces.
 - Two focal points (on either side of the lens).
 - The axis of the lens.
- There are two general types of lenses:
 - Converging (thicker on axis than on edges).
 - Diverging (thinner on axis than on edges).

(a)

Optic axis (passes through centers of curvature of both lens surfaces)

Second focal point: the point to which incoming parallel rays converge

- · Measured from lens center
- Always the same on both sides of the lens
- Positive for a converging thin lens © 2012 Pearson Education, Inc.

(a)

Second focal point: The point from which parallel incident rays appear to diverge F_1

For a diverging thin lens, f is negative.

Thin Lens Equations

- Given the two refracting surfaces, we could work out the equations for the image position and magnifications based on the radii of curvatures and index of refraction of the material – it's done in the book, and is straightforward.
- It just ends up being the same as for spherical mirrors:

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

• And the magnification is also the same: $m = \frac{y'}{m} = -\frac{s'}{m}$

$$m = \frac{y'}{y} = -\frac{s'}{s}$$

Sign Conventions

- Don't forget sign conventions:
 - Object distance is positive if it is on the same side (of thin lens) as the incoming rays, else it is negative.
 - Image distance is positive if it is on the same side (of thin lens) as the outgoing rays, else it is negative.
 - Focal point is positive for converging, negative for diverging thin lenses.

Optic axis (passes through centers of curvature of both lens surfaces)

Second focal point: the point to which incoming parallel rays converge F_1

Focal length ·····

• Measured from lens center

- Always the same on both sides of the lens
- Positive for a converging thin lens
 © 2012 Pearson Education. Inc.

(a)

Second focal point: The point from which parallel incident rays appear to diverge F_2

For a diverging thin lens, f is negative.

Lens Maker's Equation

- We could also work out the equation to determine the focal length of a thin lens given the radii of curvatures and the index of refraction of the material.
- Again, it's done in the book…

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

So, explain this...

Always know assumptions...

• Lens maker's equation assumes $n_a = n_c = 1$.

$$\frac{n_a}{s_1} + \frac{n_b}{s_1'} = \frac{n_b - n_a}{R_1}$$

Graphical Methods

- The primary rays for thin lenses are very similar to the ones we chose for mirrors:
 - A ray that is parallel to the lens axis and then passes through the second focal point.
 - A ray through the center of the lens.
 - A ray that passes through the first focal point and then emerges parallel to the axis.

- 1 Parallel incident ray refracts to pass through second focal point F_2 .
- 2 Ray through center of lens does not deviate appreciably.
- 3) Ray through the first focal point F_1 emerges parallel to the axis.

Graphical Methods

- The primary rays for thin lenses are very similar to the ones we chose for mirrors:
 - A ray that is parallel to the lens axis and then passes through the second focal point.
 - A ray through the center of the lens.
 - A ray that passes through the first focal point and then emerges parallel to the axis.

- 1 Parallel incident ray appears after refraction to have come from the second focal point F_2 .
- (2) Ray through center of lens does not deviate appreciably.
- Ray aimed at the first focal point F_1 emerges parallel to the axis.

Demonstrations

(a) Object O is outside focal point; image I is real.

(b) Object O is closer to focal point; image I is real and farther away.

(c) Object O is even closer to focal point; image I is real and even farther away.

(d) Object O is at focal point; image I is at infinity.

(e) Object *O* is inside focal point; image *I* is virtual and larger than object.

© 2012 Pearson Education, Inc.

SO FALL AND AND PRODUCED HIS

(f) A virtual object *O* (light rays are *converging* on lens)

Multiple Lenses

 Again, the image from one lens can be used as the object for another lens – doesn't matter if the first image is real or virtual.

Practicum

 Of course, there are many practical uses for optics, from cameras...

Eyeglasses...

(b) Microscope optics

Practicum

• Microscopes...

• Telescopes...

This is a common design for large modern telescopes. A camera or other instrument package is typically used instead of an eyepiece.

