Lecture 2
(Simple Harmonic Motion)
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Simple Harmonic Motion

* A type of periodic motion with a very explicit
definition:
* Motion about an equilibrium point with a

restoring force proportional to the distance
away from the equilibrium point.
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Simple Harmonic Motion
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Simple Harmonic Motion

* Analyze: F=-kx> Hooke's Law
ma=—kx = Newton's 2nd Law
d*x .. :
m? = —kx = Definition of acceleration
d’x k

—=——X Divide both sides by m
dt m
* Differential equation relating the changing acceleration to the
position.

* Try non-periodic solutions:
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Simple Harmonic Motion

d*x _ k
* Try a periodic solution: a7
2
x(t)=cos(ct) = % = —csin(ct) = fﬁf =—c? cos(ct) = —;cos(ct)
if ¢* =£
m

* The general solution is:
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Phase

Note that the functions sin and cos repeat every 21. The argument of these
functions is called the phase.




Simple Harmonic Motion

* The phase constant determines the value of x
at t=0:

x(t)=Acos(wt+¢), a):\/%

These three curves show SHM with
the same period 7 and amplitude A
but with different phase angles ¢.
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Phase Constant

What if we want a sine function, but would like it to start at V4 1 instead of zero?
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What if we want a sine function, but would like it to start at -4 11 instead of zero?

—1-sin(x+l7rj
4 4



Simple Harmonic Motion

* The factor in front of time sets the (angular)
frequency of oscillations, so:
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k
x(t)=Acos - t+¢ cos(wt+¢), o ”

(a) Increasing m; same A and k (b) Increasing k; same A and m

(c) Increasing A; same k and m
Mass m increases from curve Force constant k increases from Amplitude A increases from curve

I to 2 to 3. Changing A alone has

I to 2 to 3. Increasing m alone curve | to 2 to 3. Increasing k& alone
X
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increases the period. . decreases the period.

X no effect on the period.
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Frequency, Angular Frequency and

Period
There is sometimes confusion about these
guantities. 2
x(t)=Acos(wt+¢), o= |—
m

w is called the angular frequency.

The function x(t) returns to its starting point when
wt = 21T, so the period (amount of time to complete

one cycle), is: '

T
Q)

The frequency (number of cycles per second) is just:
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Position, Velocity and Acceleration

(a) Displacement x as a function of time ¢

* We can differentiate to get the velocity sl s g ®
0 L\\/l/\\/l/\\) /
x(t) = Acos(a)t + gb) — N— ' & g
_x(1)

v(2)
* And again to get acceleration

v(t)=—odsin(ot+¢)= Y

* Note that:

= _COA Sin (CO [+ ¢) (b) Velocity v, as a function of time

a(t)= —a)zAcos(cotﬂb) = —a)zx(t) = ——x(t) =

ma(t) = —kx(l)



Energy in Simple Harmonic Motion

* Without any other forces (friction), we can
describe the energy of a spring-mass system

by the kinetic energy:

KE = %mv2 (1)= %mcoz/l2 sin® (&1 +¢)

(kY L., R
_Em(\/%j A’ sin (a)t+¢)—5kA sin® (o1 +¢)
* And the potential energy is:

U, = %kxz (1) = %kA2 cos’ (wt+¢)



Energy in Simple Harmonic Motion

* So, the total energy is the sum of these:

E =KE+U, = %kA2 sin” (m+¢)+%kA2 cos’(w?+¢)

- %k/l2 (sin2 (ot +¢)+cos (a)t+¢))

_
2

e But there is no time dependence here —
conservation of energy!



Energy in Simple Harmonic Motion

KE=2J
PE=0

The numbers on the diagram assume
that 2 joules of work was done to set
the mass into motion. The sum of the
kinetic and potential energies must
then always sum to 2 J, neglecting
dissipation,

2

KE=2J
PE=0
KE + PE = 2J

No gravity...



The Simple Pendulum

F. =-mgsmo

For small 0:



The sinB® small angle approximation

* Taylor expansion around 6=0:

sin9=i (_l)n 92n+1:9_§+95 —
o (2n+1)! 51 71

 Or, just examine the graph near 6=0:
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The Simple Pendulum

F. =-mgsmo
For small 0:

F =-mgsin0 =-mgo



Arc length

* For a circle of radius r, the
circumference is 2TTr.

* Notice that the angle all the way
around a circle is 21T angle.

* For an arc, subtending an angle 6,
the arc length is just the same
fraction of the circumference as

the angle is to 21
0

s=2nr-—=r06
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The Simple Pendulum

F. =-mgsmo
For small 0:
F =-mgsin0 =-mg0 = —mgi
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Same form as mass-spring!




Torsion Pendulum

* Torsion spring applies a
torque that is proportional to
the angular displacement:

Toc—0=>1=—K0

* From the rotational version of “\

Newton’s second law:

2
Zleazld?:
dt

d’0
dt*

—xk0=1 —
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Torsion Pendulum

* But this is the same
differential equation we had
for a linear mass-spring
system!

d’0 K d’x k

___0 > —-—— X

dt’ i ?_ m
e So, it has the same solutions:

K

6(t)=®cos(a)t+(/5), w=,|—
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Problem 13.36

13.36. A thin metal disk with
mass 2.00 X 10 kg and radius
2.20 cm 1s attached at its center
to a long fiber (Fig. 13.32). The
disk, when twisted and released,
oscillates with a period of
1.00 s. Find the torsion constant
of the fiber.




