Lecture 20 (Interference II Phasors and Interference Intensity)

Physics 2310-01 Spring 2020 Douglas Fields

Review

$$\delta \phi = kr_1 - kr_2 + (\phi_1 - \phi_2)$$

$$= \frac{2\pi}{\lambda} (r_1 - r_2) + (\phi_1 - \phi_2)$$

$$(r_1 - r_2) = d\sin\theta$$

 $\leftarrow -3/2$

 $\leftarrow -5/2$

 $\leftarrow -7/2$

 $\leftarrow -9/2$

 $\leftarrow -11/2$

 $-5 \rightarrow$

For small angles: $\sin \theta \approx \tan \theta = \frac{y}{R}$

© 2012 Pearson Education, Inc.

$$y_m = R \frac{m\lambda}{d}$$
, $m = 0, \pm 1, \pm 2...$ Constructive

the distance d between the slits ...

$$y_m = R \frac{\left(m + \frac{1}{2}\right)\lambda}{d}, \quad m = 0, \pm 1, \pm 2...$$
 Destructive

Young's Two-Slit Experiment

• What is the wavelength of the light in this example? $\frac{d}{d} = \left(\frac{1}{m}\right)^{\frac{1}{2}} = \frac{1}{2} \cdot \frac{1}{$

$$\frac{d}{R}y = m\lambda, \quad m = 0, \pm 1, \pm 2... \Rightarrow$$

$$y_m = R \frac{m\lambda}{d}, \quad m = 0, \pm 1, \pm 2...$$

$$\frac{d}{R}y = \left(m + \frac{1}{2}\right)\lambda, \quad m = 0, \pm 1, \pm 2\dots$$

$$y_m = R \frac{\left(m + \frac{1}{2}\right)\lambda}{d}, \quad m = 0, \pm 1, \pm 2...$$

Describing the Intensity Pattern

$$y_m = R \frac{m\lambda}{d}$$
, $m = 0, \pm 1, \pm 2...$ Constructive $y_m = R \frac{\left(m + \frac{1}{2}\right)\lambda}{d}$, $m = 0, \pm 1, \pm 2...$ Destructive

- OK, so now we know:
 - where the bright and dark spots are,
 - what happens if we change the distance between slits,
 - what happens when we change the wavelength of light
- But can we quantitatively describe the intensity pattern that we see?
- Yes, but we will need a tool that you saw earlier:
- Phasors.

What is the intensity at some point?

The electric field (of an EM wave) is written generally as:

$$E_1(r,t)=E_1(r)cos(kr-\omega t+\phi_1^0)$$

• But, if we want to look at the intensity at a point:

$$E_{1}(r_{1},t)=E_{1}(r_{1})cos(kr_{1}-\omega t+\phi_{1}^{0})$$

• Then r_1 is a constant and kr_1 can be rolled into the phase of the wave at that point in space (it doesn't change with time).

$$E_1(r_1,t) = E_1(r_1)cos[-\omega t + (kr_1 + \phi_1^0)]$$

Superposition with Phasors

 Now, if we want to add two waves (superimpose) we have to add the phasors vectorially, where the only important phase is the phase difference:

$$egin{aligned} E_1(r_1,t) &= E_1(r_1)cos[-\omega t + (kr_1+\phi_1^0)] \ E_2(r_2,t) &= E_2(r_2)cos[-\omega t + (kr_2+\phi_2^0)] \ \Rightarrow \ \delta\phi &= (kr_2+\phi_2^0) - (kr_1+\phi_1^0) \ \delta\phi &= (kr_2-kr_1) + (\phi_2^0-\phi_1^0) \end{aligned}$$

Superposition with Phasors

 Then, we can find the amplitude of the resultant wave as the vector sum of the two phasors:

$$\mathbf{E_P} = \mathbf{E_1} + \mathbf{E_2}$$

- Now, if $|E_1|$ is not equal to $|E_2|$, regardless of the phase difference, there will be no (complete) destructive interference.
- With $|E_1| = |E_2| = E$, we can use trig to find E_2 :

$$egin{align} E_{P}^{2} &= E^{2} + E^{2} - 2E^{2}cos(\pi - \delta\phi) \ &= E^{2} + E^{2} + 2E^{2}cos(\delta\phi) \ &= 2E^{2}(1 + cos(\delta\phi)) \ &= 4E^{2}cos^{2}(rac{\delta\phi}{2}) \end{array}$$

$$E_P = 2E \mid cos(rac{\delta \phi}{2}) \mid$$

where,

$$\delta\phi=(kr_2-kr_1)+(\phi_2^0-\phi_1^0)$$
 Phase DIFFERENCE!

Amplitude and Intensity

• Now, E_p is the **amplitude** of the resultant phasor (it also rotates with angular frequency ω).

$$E_P(t) = E_P cos\omega t = 2E \mid cos(rac{\delta\phi}{2}) \mid cos\omega t$$

The intensity of light is just:

$$egin{align} I &= S_{Avg} = rac{1}{2\mu_0 c} E_{Max}^2 \ E_{Max} &= E_P = 2E \mid cos(rac{\delta \phi}{2}) \mid \Rightarrow \ I &= rac{1}{2\mu_0 c} [2Ecos(rac{\delta \phi}{2})]^2 \ I &= rac{2E^2}{\mu_0 c} cos^2(rac{\delta \phi}{2}) \end{aligned}$$

Sources in Phase

• If the two sources are in phase, $\phi_1^0 = \phi_2^0 = \phi_0$ and then the phase difference at the position of interest is just:

$$egin{aligned} E_1(r_1,t) &= E_1(r_1)cos[-\omega t + (kr_1 + \phi_0)] \ E_2(r_2,t) &= E_2(r_2)cos[-\omega t + (kr_2 + \phi_0)] \ &\Rightarrow \ \delta \phi &= (kr_2 + \phi_0) - (kr_1 + \phi_0) \ \delta \phi &= (kr_2 - kr_1) \ \Rightarrow \ \delta \phi &= rac{2\pi}{\lambda}(r_2 - r_1) \end{aligned}$$

Sources in Phase

 Then, the conditions for constructive and destructive interference can be put in terms of the overall phase difference:

- Constructive:
$$\phi = (\phi_2 - \phi_1) + (kr_2 - kr_1) = 2m\pi$$
 $m = 0, \pm 1, \pm 2, ...$

– Destructive:
$$\phi = (\phi_2 - \phi_1) + (kr_2 - kr_1) = (2m+1)\pi$$

Assumptions again...

 What do you see that is inconsistent between the picture and the graph?

Phasors, really?

- We will see in the coming lectures that you get interference patterns even when you only have one slit!
- To understand this phenomena, and others, you have to understand the phasor diagrams obtained when you break up the source wave front into a continuous set of sources (a la Huygens).
- We won't begin this discussion today, but know that you need to understand how to set up a phasor diagram.

(b) At the center of the diffraction pattern (point *O*), the phasors from all strips within the slit are in phase.

(c) Phasor diagram at a point slightly off the center of the pattern; $\beta = \text{total phase difference}$ between the first and last phasors.

(d) As in (c), but in the limit that the slit is subdivided into infinitely many strips

© 2012 Pearson Education, Inc.