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Single-Slit Diffraction

* As we have already hinted at, and seen, waves don’t
behave as we might have expected from our study
of geometric optics.

 We can see interference fringes even when we only
have a single slit!

* To understand this phenomena, we have to go back
to Huygens’ Principle and phasor diagrams.

(b) WHAT REALLY HAPPENS:

(a) PREDICTED OUTCOME: \
Geometric optics predicts that this \ In reality, we see a diffraction ===========fsuil
setup will produce a single bright *--Ji Screen pattern—a set of interference
band the same size as the slit. fringes.
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Doesn’t have to be a slit.

* Any obstruction can cause an interference

pattern.
(a

I"’L - Photograph of a razor blade illuminated by
¥ monochromatic light from a point source (a
pinhole). Notice the fringe around the
blade outline.

(b) Enlarged view of the area outside the
geometric shadow of the blade’s edge
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Position of geometric shadow
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Single-Slit Diffraction

Because real slits have finite width,
then there is not just a single
source of Huygens wavelets, but
many (infinite?).

As we saw with the two-slit
problem, the geometry of the
problem is much easier when we
go to the limit that the distance to
the screen (where the interference
pattern is viewed) is much larger
than the width of the slit. —
Fraunhofer or far-field diffraction.

When this isn’t the case, you still
get diffraction, it just looks
different. — Fresnel or near-field
diffraction.

(a) A slit as a source of wavelets
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Slit
width
a

Each strip is a source of
Huygens’s wavelets.
Plane waves

incident on the slit
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Fresnel diffraction of circular Fraunhofer diffraction of circular
aperture” aperture
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Fresnel and Fraunhofer Diffraction

* The only distinction is the distance between the
slit and the screen.

* |In Fraunhofer diffraction the distance is large
enough to consider the rays to be parallel.

* We will limit our discussions to Fraunhofer
diffraction (to make the geometry simpler).

imaginary strips parallel

(a) A slit as a source of wavelets
to the slit’s long axis. H

Slit
width
a
H Each strip is a source of

Y, Huygens’s wavelets.
Plane waves

incident on the slit
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H\\c divide the slit into

If the screen is close,
the rays from the
different strips to a
point P on the screen
are not parallel.

Screen

If the screen is distant,
the rays to P are
approximately parallel.

Fraunhofer pattern on
H a nearby screen.

Converging
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A converging lens imx

cylindrical lens

(b) Fresnel (near-field) diffraction  (c) Fraunhofer (far-field) diffraction  (d) Imaging Fraunhofer diffraction
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Fraunhofer Diffraction

Let’s first start by looking at our slit of width a.

We then look at two sources of Huygen’s wavelets located
at the top and the middle of the slit, separated by distance

a/2.
We will analyze these two wavelets,

But our analysis will be the same for any two wavelets
from “slits” separated by the same distance.
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Fraunhofer Diffraction

* So, just as before, the path difference is just the slit spacing times
the sin of the angle: a
(r,—1n) :Esm9

* And, we use the same small angle approximations as before:
tan60 =~ sin 0 2%
* So, the phase difference is given by:

8¢ = k(ry —ry) = 222

(a)
— r
ai r R 2
For the two strips shown, the path difference to P is (a/2) sin 6.
When (a/2) sin § = /\/2, the light cancels at P. This is true for the
whole slit, so P represents a dark fringe.
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Fraunhofer Diffraction

The condition for a dark band is that the two sources are out of

phase, so o g U
0p=F3E =T

Solving for y, we get:
__ RX
Ymin = —
Now, instead of dividing the slit into pairs that start at the
halfway point, we could have started at the quarter-way point
(since to cover the entire slit requires some factor of two) and

repeat the process. This would give:
2R\

Ymin = a

Doing it at the one-sixth-way point, would give us:

3R\

Ymin = a

And so on, so that in general,
Ymin = 222 m = +£1,+2, +3..,



Single-slit diffraction

You pass 633-nm laser light through a narrow slit and observe the
diffraction pattern on a screen 6.0 m away. The distance on
the screen between the centers of the first minima on either side of
the central bright fringe 1s 32 mm (Fig. 36.7). How wide is the slit?

RmA
V= , m==%x1,£2,... y
a
~
/:;Htvvkhh = ?
/{ 32 mm
1
x=60m

Screen



Intensity and Phasors

* OK, | don’t know about you, but this

method seems a little sketchy. Let’s (,
try to be a bit more like scientists, i U Strips within slit
and just use phasors for some Slit /
number of sources in the slit, which widw
we will then let go to infinity. a
 We'll start with 14 sources, and V H :
begin by looking at the phasors at ;. . /\ 1! Rlstaptsereen

point O, where, for long distance to incident on the slit
the screen, they are all in phase: ©2012 Pearson Education, Inc
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* We take the magnitude of the
resultant wave at O to be EO.



Slightly off center...

* If we move slightly off-center,
each ray is slightly out of phase

with the next.

« Remember that this is far-field,
so that we can assume that each

ray is parallel.

(a)
A
Slit .
width =
a S
\%

Plane waves
incident on the slit
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U Strips-within slit—

RS — 0 |~ — =

Distant screen

(a)

U Strips within slit

ﬂ Distant screen
Plane waves

incident on the slit

(¢) Phasor diagram at a point slightly off the
center of the pattern: S = total phase difference
between the first and last phasors.
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To infinity, and beyond!

In the limit of infinite numbers of strips

each infinitesimally long, it becomes an  (d) As in (). but in the limit that the slit is

arc of a circle, with angular extent 3 —
the difference between the phase of
the first and last rays.

Since the length of an arc is given by:
L =pr
And we know what the arc length is,

E  so:
o’ E
E,=pr=>r=—2

Then, with just a little simple trig, we
can get the length of the resultant
phasor:

E, = Z&Sing =K,

tp

sin(3/2)
B/2

subdivided into infinitely many strips
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Resultant Amplitude

(d) As in (), but in the limit that the slit is

subdivided into infinitely many strips

* Now, the total phase
change between the

first and last rays is just:
P =kasin6

* SO, i Esin(ﬂ/2)

=587
_ sin| (kasin®)/2 | O
(kasin®)/2 B

” Distant screen

sin I:(ﬂa sin0 )/ﬂ*:l Plane wﬁvcs
(ﬂ'a SIHQ)/), incident on the slit
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Intensity

* Since the intensity is just
proportional to the
square of the electric
field, then,

RmA
sin[(nasin@)//l] Y= m=x%1,%£2,...
E,=E, (zas = a
wasing)/A
2

i {sin[(nasin@)/ﬂ,}} @ I = 0.00831,
= 1Ly . <-m =73

(masing)/A I = 001651,
<m = 2
* Now, we have a N .

complete picture of the —!
diffraction pattern: —

< — — ]
<m = —2

<—m = —3




* The positions of the first minima are given by: sin6 =

Width of Central Peak

nﬂ, m==1
a

* For small angles, sin0 =0, the width of the central peak is

01 _0—1 =

a

)

a a

* Also, as a approaches the wavelength, there are no minima,
and the diffraction pattern is just one broad peak.

@a=A

If the slit width is equal to or narrower than the
wavelength, only one broad maximum forms.

—20°
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(b) a = 5A

() a = 8\

The wider the slit (or the shorter the

_wavelength), the narrower and sharper

I # is the central peak.
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