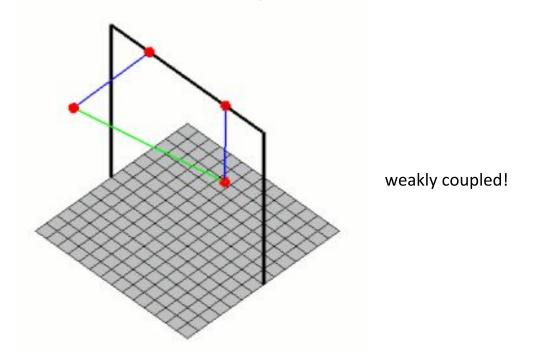
Lecture 3 (Coupled Harmonic Oscillators)

Physics 2310-01 Spring 2020 Douglas Fields

Coupled Harmonic Oscillators

- Let's go back to our discussion of harmonic oscillators, specifically pendulums.
- When two SHO are put into contact some way, such that energy from one can be transferred to the other, we have coupled harmonic oscillators.



- https://phet.colorado.edu/sims/normal-mode
 s/normal-modes_en.html
- http://www.falstad.com/loadedstring/

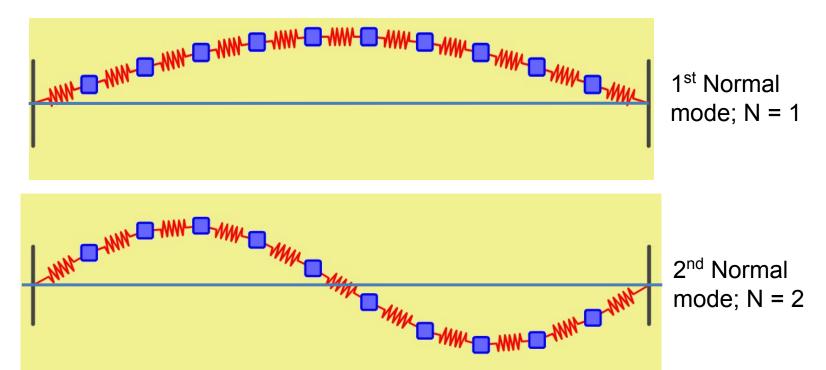
Normal modes?

• Notice that:

- For a particular normal mode, every mass has the same frequency of oscillation.
- There is the same total number of normal modes as there are masses.
- Normal modes alternate between being symmetric (with respect to the center) and anti-symmetric.
- Each normal mode has a certain number of nodes and antinodes:
 - Nodes are points where the amplitude of oscillations is zero.
 - Antinodes are points where the amplitude of oscillations is maximal.

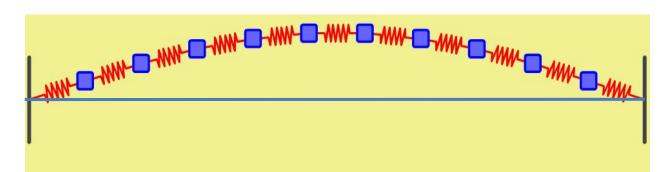
Normal modes?

 Notice that, for a given normal mode, the amplitude of oscillation for a particular mass does not change over time, but are different from mass to mass:

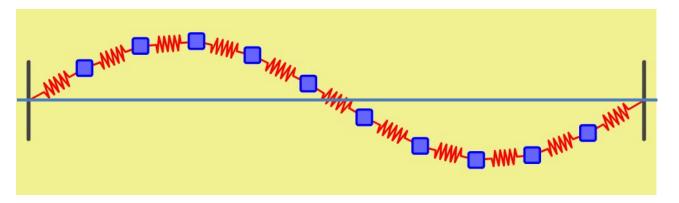


Normal modes?

 To try to make a mathematical description of the normal modes, we notice that the amplitudes vary as a sine function of the position:



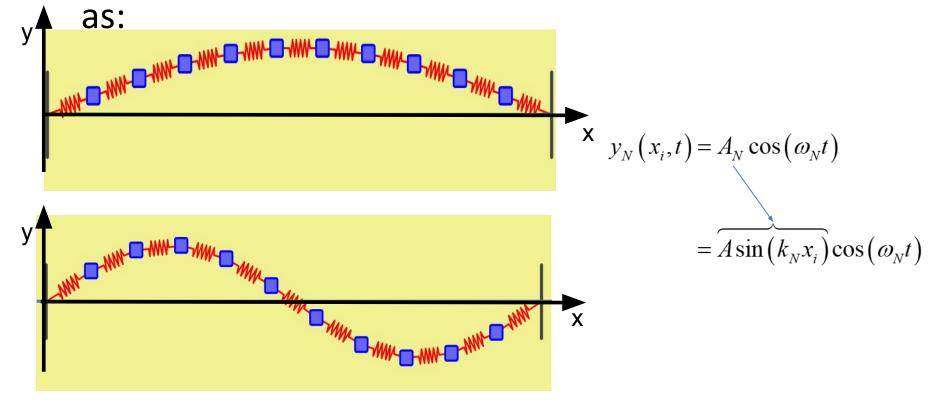
$$A_N(x_i) \propto \sin(k_N x_i)$$
$$= A \sin(k_N x_i)$$



Read: the amplitude of the ith mass in the Nth normal mode is proportional to the sin of the x-position of the ith mass times a constant which depends on the mode number

Time Dependence

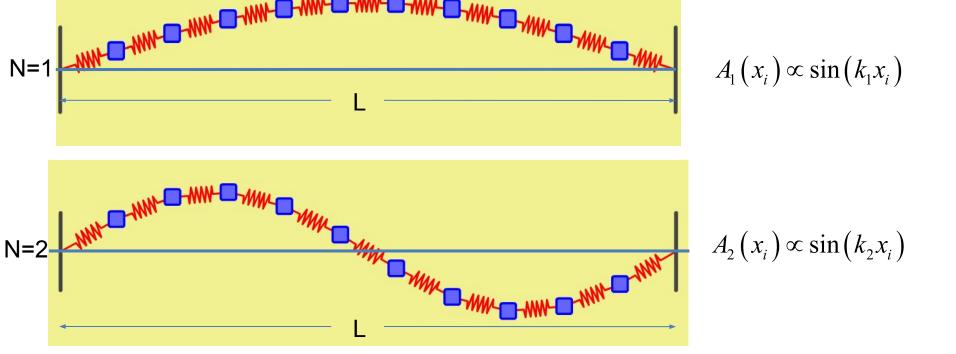
 Since, for the normal modes, all of the masses oscillate with the same frequency, their displacement from equilibrium can be described



Questions

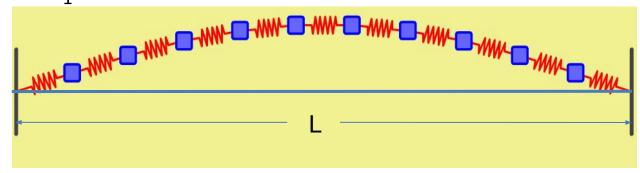
 $y_N(x_i,t) = A\sin(k_N x_i)\cos(\omega_N t)$

- What units do the k_N have?
- What units do the ω_N have?
- What is the value of k_2 ?



Answers

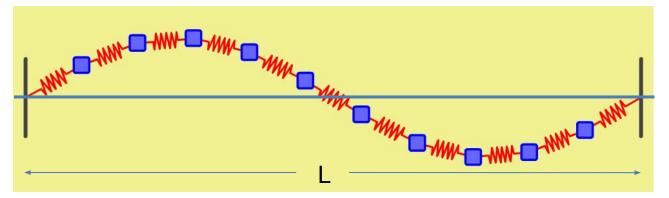
- The argument of a trigonometric function must be unitless, so k_N must have units of m^{-1} .
- For N=2, after the distance L, the sine function repeats, and since sine repeats every 2π , k_2 must be $2\pi/L$.
- k_1 would then be 2 π /2L.



$$A_1(x_i) \propto \sin(k_1 x_i)$$

$$A_1(x_i) \propto \sin(k_1 x_i)$$

$$A_1(x_i) \propto \sin(\frac{\pi}{L} x_i)$$



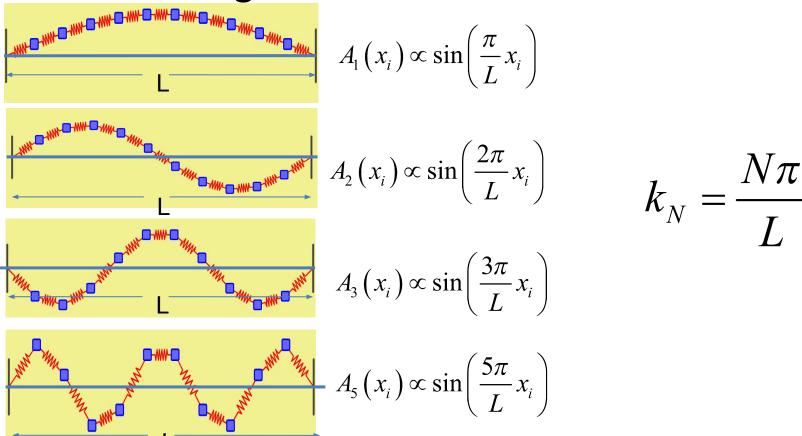
$$A_2(x_i) \propto \sin(k_2 x_i)$$

$$A_2(x_i) \propto \sin(k_2 x_i)$$

$$A_2(x_i) \propto \sin\left(\frac{2\pi}{L}x_i\right)$$

General k

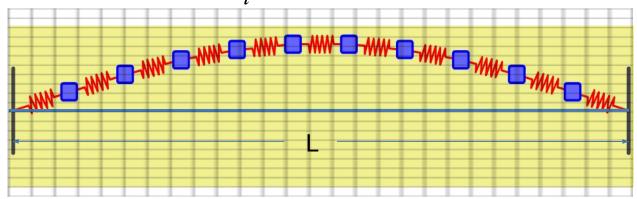
 By looking at a few more normal modes we can see the general form for k:



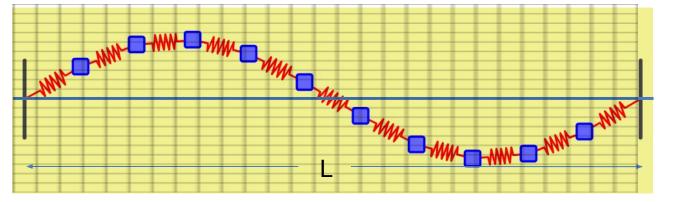
Why are they called **normal** modes?

What is the answer to the following problem:

$$\sum_{i} A_{1}\left(x_{i}\right) A_{2}\left(x_{i}\right) = ?$$



$$A_1(x_i) \propto \sin\left(\frac{\pi}{L}x_i\right)$$

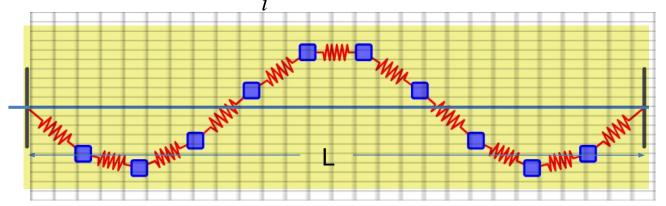


$$A_2(x_i) \propto \sin\left(\frac{2\pi}{L}x_i\right)$$

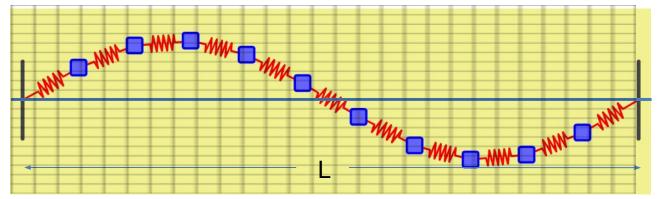
Why normal?

What is the answer to the following problem:

$$\sum_{i} A_3(x_i) A_2(x_i) = ?$$



$$A_3(x_i) \propto \sin\left(\frac{3\pi}{L}x_i\right)$$

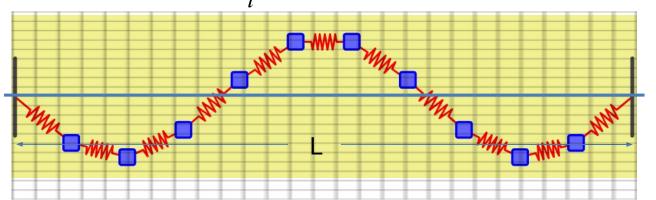


$$A_2(x_i) \propto \sin\left(\frac{2\pi}{L}x_i\right)$$

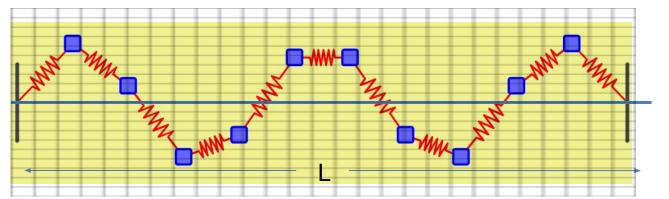
Why normal?

What is the answer to the following problem:

$$\sum_{i} A_3(x_i) A_5(x_i) = ?$$



$$A_3(x_i) \propto \sin\left(\frac{3\pi}{L}x_i\right)$$



$$A_5(x_i) \propto \sin\left(\frac{5\pi}{L}x_i\right)$$

Why normal?

They are called normal modes because:

$$\sum_{i} A_{N}(x_{i}) A_{M}(x_{i}) = \begin{cases} 0, & \text{if } N \neq M \\ \frac{L}{2}, & \text{if } N = M \end{cases}$$

- This is the condition for orthogonal functions.
- In fact, if we write these with a normalization constant of 2/L, they are orthonormal functions!

Are the only motions the normal modes?

- NO!
- But all motions can be described in terms of the normal modes:

$$y(x_i,t) = \sum_{N} c_N y_N(x_i,t)$$

• Where the constants c_N tell you how much of each normal mode to use.

Generalization

- What happens if we continue to increase the number of masses, while keeping the total length and mass of the "string" of masses constant?
 - As we approach infinitesimal masses, the number of normal modes approaches infinity.
 - Waves! We will discuss this next time.

http://www.falstad.com/loadedstring/