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Velocity

Okay, let’s look at how velocities transform between reference frames.

Let’s say we launch from earth two spaceships at the same time, one
which travels at 3=0.5 (spaceship 1), and one that travels at v=0.75
(spaceship 2), both relative to the earth.

With what speed does spaceship 2 have relative to spaceship 1?

Well, we can look at two events along the worldline of spaceship 2,

labeled as event A (the launch from earth) and event B, and just ask what
is Ax' /At
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 What if we have spaceship 2 travel in the
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opposite direction of spaceship 1, at v=-0.57
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Velocity

* So, we can see that velocity transformations in
Special Relativity are not trivial like they are in

Newtonian Relativity. How would we express
them mathematically?

e Let’s use the Lorentz transformations:
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Velocity

e So far we have only considered velocities in the same
direction as the relative velocity between the two
frames.

* Are veIOC|t|es in the transverse directions the same (v

= vy v =V ?
e Let’s use the Lorentz transformations:
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And the same for velocities in the z-direction




Velocity Transformations

* So our velocity transformations are:
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* And the inverse transformations are just given
by substituting -f3 for [3:
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Consequence of Velocity
Transformations

e Let’s ask: “What is the speed of light in the
different frames?”

* |f the home frame measures 1 for the speed of
light, what does a moving frame measure?
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* Regardless of the relative velocity between
frames!




Consequence of Velocity
Transformations

e Let’s ask: “What is the speed of something if
the frames are moving slowly relative to one
another?”
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* Which is our Newtonian relativity!
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Relativistic Dynamics

So far, we have just explored the Special Relativistic
analog of Chapter 1 in Physics 160.

We just have our variables to measure distance and
time, but we haven’t yet seen how these translate to
actions — how do objects behave when they act on
each other.

Newton’s Laws, at their heart, deal with momentum,
so let’s first look at Newtonian momentum and see if
it behaves well in our new paradigm.

Newtonian momentum is just: p=mv’
Will this definition work in every inertial frame?




Conservation of Newtonian

Momentum

* Let’s look at the following example, where we
look at a collision between two masses in the
rest frame of one of them...
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Conservation of Newtonian

Momentum
* Now, let’s just move to a frame that is moving
along with the other particle.

 We will use the SR velocity transformation
equations we just derived....
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Conservation of Newtonian momentum is not frame independent!



Four Momentum

Rather than giving up on the idea of momentum conservation, we need to
look for a new definition of momentum that:

— Gives us back Newtonian momentum at low speeds

— Gives us momentum conservation when at relativistic speeds

— It might even give us something more...
There are many ways to derive the idea of relativistic momentum (see
Special Relativity: A Modern Introduction by H.C. Ohanian for a more
mathematically rigorous derivation).

| will follow Moore’s (Six Ideas that Shaped Physics, Volume R) derivation,
which is more conceptual...

Let’s first look at the concept of Newtonian momentum:

Path of
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Newtonian momentum is tangent to
the particle’s path and involves the
time derivative of each of its three
dimensions, times its mass. 9




Four Momentum

* Now that we have discovered that time and space are
tied together in spacetime, we want to give time an
equal place with space in our momentum definition.

e Also, since time is not invariant by itself, rather than
taking the time derivative, dt (which is different for
different frames), we will take the derivative with
respect to the proper time, d71, which is frame
independent.

Worldline of
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the particle’s worldline and involves
the proper time derivative of each of
its four dimensions, times its mass.




Four Momentum
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Frame Transformations of the Four
Momentum

e How does the Four Momentum four-vector
transform between reference frames?
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Frame Transformations of the Four
Momentum

* So, the Four Momentum transforms exactly as
the spacetime coordinates.

e Just use the Lorentz transformations:
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