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Free Particle Solution Schrodinger’s

Wave Equation in 1D

If motion is restricted to one-dimension, the del operator just becomes
the partial derivative in one dimension:
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And then the wave function, of course, is also just a function of
one dimension (plus time):
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Now, this solution works for when V(x) = 0 everywhere, but fails
when not. However, when the solution has a definite energy, the
general form is:

Y(x,t)=y (x)e_"Et/ﬁ



Time Independent Schrodinger’s
Wave Equation

Plugging this into the 1D Schrddinger’s equation gives:
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And we can divide both sides of the equation by the time dependent part

to get: 2
()=~ 2OV ()

This is called the time-independent (1D) Schrodinger’s equation, which we
can use to solve for the position dependence of the wave function.

One must remember though, that the full wave function needs the time
dependent part put back in:

¥ (x,t) =y ()c)e_"Et/f7



Example

Consider the wave function §(x) = A;e™ + Are ™™, where k is
positive. Is this a valid time-independent wave function for a free
particle in a stationary state? What 1s the energy corresponding to
this wave function?
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Example

Consider the wave function ¥(x) = A;e™ + A,e ™, where k is
positive. Is this a valid time-independent wave function for a free
particle in a stationary state? What 1s the energy corresponding to
this wave function?
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Particlein a 1D “Box”

The simplest potential to understand, besides the free particle (V=0
everywhere) is V=0 over some region, and V=~ otherwise.

Think of a string stretched between two walls...
— The wave (particle) can be anywhere between the walls, but nowhere else.

| will develop the solutions as if you haven’t seen the waves on a string
solution before.
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Particle in a box

So, we start with the 1D time-independent wave equation:
i o'y (x)
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With the potential defined as:

Ey (x)= +V (x)y (x)

V(x)zO (OSxSa)
V(x)zoo (x<0,x>a)

Then, between 0 and a, we can use the solutions we know work:

y(x)=Ae™ +Be™
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Where we have included both positive and
negative exponents to include wave motion inV
both the positive and negative directions.

This turns out to be necessary to obey the
boundary conditions as well.
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Particle in a box

Now, before we try our solutions, let’s consider the boundary conditions
of our problem.

We know that the particle cannot be outside of the box defined by the
region where V=0, so:
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y(0)=Ae™ +Be™ =A4+B=0=>B=-4=

y (x)=Ae™ - 4e7™ = A[(coskxﬂ'sin kx)—(cos(—kx)ﬂ'sin(—loc))]
y(x)= A[(coskxﬂ'sinkx)—(coskx—isinkx)]

w (x)=2Aisinkx = Csin kx

Where we have conglomerated the constants together into one for
convenience for now.

Now, let’s consider the other boundary, at x =a.
y (x)=Csinkx
y(a)=Csinka=0=
ka=nr =
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Particle in a box

* So, we have for our wave function:

v, (x)=Csinkx = Csink,x = Csin ==
a

 And we have only one step remaining for a complete solution,
we need to determine C, the normalization constant.

ﬂw (x)[ dx= Icz sin? (k) dx
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* So, we have our completed spatial wave functions:
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Energy Eigenvalues

 Now, these wave functions represent a series of solutions with definite

energies, E .
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The stationary states are called eigenstates, and their energies are called energy
One thing to note is that the higher the eigenvalues (energy), the more wiggly the

This is because the kinetic energy (all there is here, since the potential is zero in the

allowed region) is given by the momentum operator squared, which is proportional
to the second derivative of the wave function with respect to position —its

curvature!



Particle in a box

We can also plot y(x), and  + ' T A A A
the probability distribution = ol > (R 2 4
for each of theses : .
solutions: vl oWl N\
Note that there ARE L '
locations inside the box v . wit| |~
where you would not =
expect to find the particle.

But, if we put a particle (say, an electron) in a 1D box (say, a nano-wire) in
a particular initial location, then it may not be in one of the eigenstates — it
could be in a superposition of several (or many)...



Particle in a box

e But, we cannot forget the time dependence:

¥, (x,t)= \/z sin 22X piE/h
a

a

 Why? Because while states of definite energy are “stationary states” (their
position probability distribution remains constant with time), if we set the
initial condition as a certain position within the box, the particle will not
have a definite energy — it will be a superposition of several stationary
states with time dependences that will create cross terms in the
probability distribution, that will change with time.

A B
Some trajectories of a particle in a box

according to Newton's laws of classical I

mechanics (A), and according to the

Schrodinger equation of quantum

mechanics (B-F). In (B-F), the horizontal ¢ 2

axis is position, and the vertical axis is

the real part (blue) and imaginary part N \//\
(red) of the wave function. The states

(B,C,D) are energy eigenstates, but (E,F) = -

are not.

~ http://chemwiki.ucdavis.edu/Wikitexts/New_York_University/CHEM-UA_127%3A_Advance d_General I_Chemistry_I/06%3A_The /\ —
_Schr%C3%B6dinger_equation%3A_Predicting_energy_levels_and_the_particle-in-a-box_model \\/ \_,/




Orthonormal Sets

* The set of wave functions form a complete set for this geometry:

W, (x.1)= \/Zsinme’w/h
a
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for any function f(x,¢) that obeys the boundary conditions:

F(xt)= zww (x.1)

* Let’s look at the probability density for one of the “eigenstates”:
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Orthonormal Sets

e Let’s just look at the probability density for a
superposition of two energy “eigenstates”:
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Eigenstates and mixed states

* So, eigenstates are
characteristic states of
the Schrodinger
equation with
determined energy.

* These states correspond
to a position
dependence that
doesn’t depend on
time.

* But combinations of
these states CAN have
time dependence of the
position.

¥o

[y |

[ |




Infinite Square Well

¥ +%

¥ +¥;

%+

—— ReVY
— ImV¥
Y'Y



Gaussian initial position
wavefunction in an infinite
potential well as a function of time
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Take-aways

When a particle is bound, there become a set of
solutions, eigenstates, with definite energies and time
independent probability densities.

These form a complete set of solutions to that
particular boundary value problem.

Combinations of the eigenstates are also solutions
with time dependent probability densities.

For an infinite square well of width a, the eigenstates
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With energies:
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