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Schrodinger’s Wave Equation

What if our potential depends on more than one coordinate?

For instance, instead of a 1-D infinite potential well, what if we have a

complete 3-dimensional box? 0<r<a

V(x,y,z)zO 0<y<b
0<z<e¢

V(x,y, z) =oo otherwise

Let’s start with our complete time-dependent Schrodinger’s equation:
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And write it out explicitly in Cartesian coordinates: b
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Time Independent Schrodinger’s
Wave Equation

 And we do what we did before, assuming that the solution
can be written as a product of the space and time parts:

¥ (x,p,z,t)=y (x,y,z)e_"Et/f7

* To get the 3-D time independent Schrodinger’s equation
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Separation of Variables

* Now, the equation may look like a monster to solve, but it turns out that there is a
nice method to approach such a problem, called separation of variables.

* First, let’s assume that the solution can be written as a product of functions of a

single variable: v (x,y,z)=X(x)Y(y)Z(z)

* And plugging this into the time independent wave equations gives us:
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* Now, in the case where V=0 (inside our 3-D box), we are left with an equation that is
independent of any spatial variables on the left-hand side (E is a constant), and has
three terms on the right, each just dependent on one of the spatial variables.



Separation of Variables

* So each term must also be equal to a constant:
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 And we recognize each of these as just the 1-D time-independent wave
equation for the infinite square well, so we also know the solutions:
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Separation of Variables

« Remember that to get the total wave function, we have to put it all back

together:
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* And the total energy is given by:

E=E +E +E,
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Symmetry and Degeneracy

Now, let’s look at what happens when we make the box symmetric...
Let a=b=c=L: E=E +E +E.
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Note: The energy can be the same for states with different sets of quantum
numbers!

This is called degeneracy — more than one state has the same energy —and is a
direct result of symmetry.

For each degree of symmetry, there will be a corresponding degree of degeneracy.
For instance, in the above case there is symmetry in 3-D, and we will find the same
energy in groups of 3 states, i.e., (2,1,1) and (1,2,1) and (1,1,2).

If one of the sides of the box was a different length, then there would only be
2-fold degeneracy.



The Coulomb Potential

OK, so let’s now investigate a more interesting potential than just a 3-D box.

Let’s look at the Coulomb potential, the potential between two
fundamental charges, e: 5
-1 e
Vir)=0—"—

dre, r

Wait, but why look at the Coulomb potential?

Because this is the potential that an electron feels due to a proton in the
Hydrogen atom!

Because of the spherical symmetry of the Coulomb potential, we can use a
similar method to write the wave function as a product of three terms:

v (r.0.4)=R(r)0(6)®(¢)

Which, as before gives us three separate differential equations to solve.

However, because the potential isn’t zero, and because of the spherical
symmetry, the equations are no longer as straightforward as the infinite
3-D box.



The Hydrogen Atom
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* See, not so bad...



The Hydrogen Atom

* The solution looks foreboding, but, in fact, it’s not as bad as it
looks.
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The normalization constant.

The r-dependence is just an exponential multiplied by a specific type of polynomial
called a generalized Laguerre polynomial.

The B-dependence is just a special polynomial in sin® and cosb.

And the @-dependence is just @™

The theta and phi parts together are known as the Spherical Harmonics, and are
found in solutions to many spherically symmetric problems in physics.



Spherical Harmonics
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Visual representations of the
first few real spherical
harmonics. Blue portions
represent regions where the
function is positive, and
yellow portions represent
where it is negative. The
distance of the surface from
the origin indicates the value
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Spherical Harmonics
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The Hydrogen Atom

Note that we now have three integers that represent particular states:

n=12,3,...
£=0,12,....n—1
m=—L,....1

We should have expected three quantum numbers, since we are in three
dimensions (like n , n, and n_for the 3D box).

Here, n represents the primary quantum number, and the energy of the
states are given by:

1 me” 13.6eV
k,=- 25 242 2
(477;go) 2n ﬁz n

Recognize this?

The fact that the Schrédinger’s equation gives us the same energy states as Bohr’s
model (which were experimentally verified) is good verification that it is good model.

In fact, we will find out that it tells us something about the atomic orbitals that is in
disagreement with Bohr’s model!



Hydrogen Wave Functions

@ Hydrogen Wave Function
* The wave functions , o

3n=1-1) 2
look like this, where Frn? “*"J(,au ) 2 1P Yin0,0)
we are looking at a
cross-section of the
3-D wave functions,
and color is used to
show the amplitude
of the wave function

as a function of E
position. ¥

* Note that these are 3,2, (3,2,1)
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Symmetry and Degeneracy (Again)

* Notice that the energy only depends on the
guantum number n, so that there are several
states that have the same energy.

* This is because the other two quantum numbers
are associated with the angular dependence of
the wavefunctions, and our potential, the
Coulomb potential is independent of the angle!

 We will see later that we can break this symmetry
(by adding a external electric or magnetic field)
which will remove the degeneracies.



Superposition of Degenerate States

 The electron can be in any superposition of states, including states
that have different energy.

* But if they have different energies, then the superposition state
will have a probability distribution that changes with time.
— This represents motion of the electron, and therefore radiation.
— These superposition states won’t be stable.
* However, if the states that are superimposed have the same

energy, the probability distribution won’t have any time
dependence.

— They will represent stable states.
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States

* A state of the electron is described by a specific
wavefunction (or a specific combination of wavefunctions in
the case of a superposition state).

 The wavefunction is the complete wavefunction:
‘P(r,@,qb,t):l//(r,H,(/ﬁ)e_iE’/h

e And for states with determined energy (= eigenstates =
stationary states), we solved the time independent 3D
Schrodinger equation in spherical coordinates with the
Coulomb potential to get:
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Probability Distributions

P(r)

75 l2 Iy

The probability of finding an electron within a
radial shell dr is just given by:

P(r)dr= |1//‘2 dV = |1,u|2 Arcr*dr
The factor dV goes to zero at r = 0, so that the
probability distribution functions P(r), (shown

in the figure here) go to zero even though the
wave functions do not (see above).

Note that there are nodes in the distributions,

but whenever £ is maximum for a givenn,
there is a single peak at n%a,, the same result
given by the Bohr model.
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Angular Momentum Quantization

So, what do the quantum numbers mean?

The first, n, determines the average radial distance of the electron
from the center of the nucleus, and is the primary driver of the
electron’s energy state.

The second, £, determines the quantization of the orbital angular
momentum:

L=Jl(L+1)A £=0,1,2...n—1

Note that there are n different possibilities for the state of the
orbital angular momentum for the nt" energy level.

Also note that when £=0, the magnitude of the orbital angular
momentum is zero — which is different from Bohr’s model, where
the electron is always orbiting around the nucleus.

This means that for £=0 states, the electron spends a small, but not
insignificant amount of time inside the nucleus.



Angular Momentum Quantization

e What about ml?

* The third quantum number defines the projection of the angular
momentum L onto some axis (which we will denote by the z-axis).

* Note that in the absence of any “probe”, the potential is

spherically symmetric, so we are free to define that in any
direction.

L =mh m,=0,+1,+2...+/

* For an ¥=2 state, L, can take on 5 values,
as shown in the figure.




Quantization and Mathematics

The quantization of E, L and L, can be viewed as the result of the boundary
conditions, normalization and periodicity of the wave functions.

The condition that ©(0) does not go to infinity results in the quantum
number .

The condition that ®(¢) is periodic results in the quantum number m,.

But one can also view the particular
quantization rules in terms of the uncertainty )
principle: jelogy

— If any component of L could be equal to the
magnitude, then we would have the electron
orbiting in a plane such that p. would be zero.

— That absolute knowledge of one component of
the momentum would require a complete
uncertainty of its position in that coordinate.

— Note thatL and L are undetermined up to
some value, Ieadnxg to a definite and
reasonable uncertainty on position.




