Physics 303 Fall 2022 Exam 1 NAME: Solutions

1) Find the angle between the two vectors $\mathbf{a} = (3, 4, 2)$ and $\mathbf{b} = (4, 3, 3)$.

$$\vec{a} \cdot \vec{b} = ab \cos \theta_{ab} = a_1b_1 + a_2b_2 + a_3b_3$$

$$a = \sqrt{a_1^2 + a_2^2 + a_3^2} \quad \text{and} \quad b = \sqrt{b_1^2 + b_2^2 + b_3^2}$$

$$a = \sqrt{29} \qquad b = \sqrt{34}$$

$$\therefore \theta_{ab} = \cos^{-1} \left[\frac{3 \cdot 4 + 4 \cdot 3 + 2 \cdot 3}{\sqrt{29} \sqrt{34}} \right]$$

$$= \cos^{-1} \left[\frac{30}{\sqrt{29} \cdot \sqrt{34}} \right] = \cos^{-1} \left[0.955 \right]$$

$$= 0.2998 \text{ rad} = 17.177^{\circ}$$

2) A frictionless puck is launched up a plane, inclined at angle θ with respect to the horizontal, with initial velocity v_0 . How long will it take to return to its starting point, and what was the total distance traveled? **Ignore air resistance.**

Fx = -mgsin
$$\theta$$
 = m \sqrt{x}

1. $\sqrt{x} = \sqrt{0} - g \sin \theta$. t
 $x = \sqrt{1} - \frac{1}{2} g \sin \theta$. t

When $\sqrt{x} = 0$, $\sqrt{0} = g \sin \theta$. t

So, total trip is twice this.

at the top,

 $x = \sqrt{0} \frac{\sqrt{0}}{g \sin \theta}$
 $= \frac{\sqrt{0}}{2g \sin \theta}$

So, total trip is twice that.

3) A mass m on the end of a rod of length R is rotating in a vertical circle with a constant angular velocity ω . Write down Newton's second law for the mass in polar coordinates, and find the force of the rod on the mass when it is at its lowest point. **Ignore air resistance.**

$$\Sigma F_r = m(\ddot{r} - r\dot{\phi}^2)$$
 but, $\Gamma = R = constant = \Sigma$
 $\Sigma F_{\phi} = m(r\dot{\phi} + 2\dot{r}\dot{\phi})$ and $\dot{\phi} = \omega = constant$
 $\Sigma F_c = -mr\dot{\phi}^2 = mr\omega^2$

$$ZF_r = -mr\phi = mr\omega$$

 $\Sigma F_{\phi} = 0$

Let's label the force on the mass from the rod \hat{f}_r and \hat{f}_{ϕ} and the force on the mass from gravity $\vec{F}_g = -mg\sin\phi \hat{r} - mg\cos\phi \hat{\phi}$

So,
$$\Sigma F_r = f_r - mg \sin \phi \hat{\Gamma} = -mr \omega^2$$

 $\Sigma F_{\phi} = f_{\phi} - mg \cos \phi = 0$
at the bottom, $\phi = 270^{\circ} = 0$
 $f_r = mg \sin \phi - mr \omega^2$
 $= -m \left(g + r \omega^2 \right)$
and $f_{\phi} = 0$

4) A mass m has velocity v_0 at time t=0, and coasts along the x axis in a medium where the drag force is $F(v) = -cv^{3/2}$. Use the method of separation of variables to find v in terms of time t and the other given parameters.

$$F = M \dot{v} = -c v^{3/2} = >$$

$$M \frac{dv}{dt} = -c v^{3/2} = > \int_{0}^{\infty} \frac{dv'}{v'^{3/2}} = \frac{c}{m} \int_{0}^{\infty} dt'$$

$$-2 v'^{-1/2} \Big|_{v} = -\frac{c}{m} t$$

$$v = \left(\frac{c}{2m}t + V_{0}^{-1/2}\right)^{-2}$$

$$V = \frac{V_{0}}{(1 + \frac{ct}{2m})^{2}}$$

5) A motionless moth of mass 3 grams is struck by the windshield of a car moving at 32 m/s. The collision takes place over the span of one microsecond. What is the average force that the moth puts on the windshield?

Force on moth =
$$F_{Avg} = \frac{\Delta P}{\Delta t} = \frac{Pi - Pe}{\Delta t} = \frac{0 - mv}{\Delta t} = -\frac{0.003 \text{kg} \cdot 32\%}{1 \times 10^{-6} \text{s}}$$

$$= -96,000 \text{ N}$$
i. From Newton's 3rd law
$$F_{avg} = \frac{\Delta P}{\Delta t} = \frac{Pi - Pe}{\Delta t} = \frac{0 - mv}{\Delta t} = -\frac{0.003 \text{kg} \cdot 32\%}{1 \times 10^{-6} \text{s}}$$

6) The transverse velocity of a particle in a magnetic field is given by $\eta=v_x+iv_y$, which can also be written as $\eta=ae^{i\delta}e^{-i\omega t}$. Use Euler's formula to describe the time dependence of the transverse velocity.

and
$$V_x = Re(\mathcal{Y})$$
, $V_y = Im(\mathcal{Y})$
 $M = ae^{i\delta}e^{-i\omega t} = ae^{i(\delta-\omega t)} = a[\cos(\delta-\omega t) + i\sin(\delta-\omega t)]$ Formula

 $V_x = a\cos(\delta-\omega t)$, $V_y = a\sin(\delta-\omega t)$

The magnitude of $V = (V_x^2 + V_y^2)^{\frac{1}{2}} = (a^2\cos^2(\delta-\omega t) + a^2\sin^2(\delta-\omega t))^{\frac{1}{2}} = q$

at $t = 0$, $V_x = a\cos\delta$, $V_y = a\sin\delta$

7) Write z = 4 + 2i in the form $z = re^{i\theta}$.

$$\Gamma = \sqrt{4^2 + 2^2} = \sqrt{20}$$

$$\theta = \tan^{-1}\left(\frac{\text{Im}(2)}{\text{Re}(2)}\right) = 0.46 \text{ rad}$$

$$\therefore \ \ 2 = \sqrt{20} \ e^{i(0.46)}$$