CHAPTER 11

SCATTERING

11.1 INTRODUCTION
11.1.1 Classical Scattering Theory

Imagine a particle incident on some scattering center (say, a proton fired at a heavy
nucleus). It comes in with energy E and impact parameter b, and it emerges at
some scattering angle 6 —see Figure 11.1. (I'1l assume for simplicity that the tar-
get is azimuthally symmetrical, so the trajectory remains in one plane, and that
the target is very heavy, so the recoil is negligible.) The essential problem of
classical scattering theory is this: Given the impact parameter, calculate the scat-
tering angle. Ordinarily, of course, the smaller the impact parameter, the greater
the scattering angle.

Scattering center z

FIGURE 11.1:  The classical scattering problem, showing the impact parameter b and
the scattering angle 6.
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FIGURE 11.2: Elastic hard-sphere scattering.

Example 11.1 Hard-sphere scattering. Suppose the target is a billiard ball,
of radius R, and the incident particle is a BB, which bounces off elastically
(Figure 11.2). In terms of the angle «, the impact parameter is » = Rsina, and
the scattering angle is 8 = w — 2«, so

T 6 0
=Rsin|——=)=R =]. 11.1
b s1n<2 2) cos(z) [ ]
Evidently
-1 .
o= 2cos™ (b/R), %fb < R, [11.2]
10, if b > R.

More generally, particles incident within an infinitesimal patch of cross-
sectional area do will scatter into a corresponding infinitesimal solid angle d2
(Figure 11.3). The larger do is, the bigger d2 will be; the proportionality factor,
D(0) = do/dS, is called the differential (scattering) cross-section:!

IThis js terrible language: D isn’t a differential, and it isn’t a cross-section. To my ear, the
words “differential cross-section” would attach more naturally to do. But I'm afraid we’re stuck with
this terminology. I should also warn you that the notation D(6) is nonstandard: Most people just call it
do /dQ—which makes Equation 11.3 look like a tautology. I think it will be less confusing if we give
the differential cross-section its own symbol.
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do
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X

FIGURE 11.3: Particles incident in the area do scatter into the solid angle d<.

do = D(0)dR. [11.3]

In terms of the impact parameter and the azimuthal angle ¢, do = bdbd¢ and
dQ =sinf dé d¢, so

D(®) [11.4]

=2 )
" sin@ |do |’
(Since 0 is typically a decreasing function of b, the derivative is actually nega-
tive—hence the absolute value sign.)

Example 11.2 Hard-sphere scattering (continued). In the case of hard-sphere
scattering (Example 11.1)

db 1. . /6
25=—5Rsm(5), [11.5]
s0 . ,
Do) = RO/ (Rs‘"(g/ 2’) _K [11.6]
siné 2 4

This example is unusual, in that the differential cross-section is independent of 6.

The total cross-section is the integral of D(0), over all solid angles:

aEfD(G)dQ; [11.7]




Section 11.1: Introduction 397

roughly speaking, it is the total area of incident beam that is scattered by the target.
For example, in the case of hard-sphere scattering,

o= (R2/4)/dsz = R?, [11.8]

which is just what we would expect: It’s the cross-sectional area of the sphere;
BB’s incident within this area will hit the target, and those farther out will miss it
completely. But the virtue of the formalism developed here is that it applies just as
well to “soft” targets (such as the Coulomb field of a nucleus) that are not simply
“hit-or-miss.” )

Finally, suppose we have a beam of incident particles, with uniform intensity
(or luminesity, as particle physicists call it)

£ = number of incident particles per unit area, per unit time. [11.9]

The number of particles entering area do (and hence scattering into solid angle
d§2), per unit time, is dN = Ldo = [ D(®)de, so

1dN
L£dQ
This is often taken as the definition of the differential cross-section, because it
makes reference only to quantities easily measured in the laboratory: If the detector
accepts particles scattering into a solid angle d2, we simply count the number

recorded, per unit time, divide by d2, and normalize to the luminosity of the
incident beam.

D) = [11.10]

* x *Problem 11.1 Rutherford scattering. An incident particle of charge ¢; and kinetic
energy E scatters off a heavy stationary particle of charge ¢>.

(a) Derive the formula relating the impact parameter to the scattering angle.?
Answer: b = (q1q2/8m€E) cot(6/2).

(b) Determine the differential scattering cross-section. Answer:

vy 2
D) = ) 11.11
82 [167760E sin2(9/2)] [ ]

(c) Show that the total cross-section for Rutherford scattering is infinite. We say
that the 1/r potential has “infinite range”; you can’t escape from a Coulomb
force.

2This isn’t easy, and you might want to refer to a book on classical mechanics, such as Jerry
B. Marion and Stephen T. Thornton, Classical Dynamics of Particles and Systems, 4th ed., Saunders,
Fort Worth, TX (1995), Section 9.10.
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eikr
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FIGURE 11.4: Scattering of waves; incoming plane wave generates outgoing spheri-
cal wave.

11.1.2 Quantum Scattering Theory

In the quantum theory of scattering, we imagine an incident plane wave, ¥ (z) =
Ae’*2, traveling in the z direction, which encounters a scattering potential, produc-
ing an outgoing spherical wave (Figure 11.4).3 That is, we look for solutions to
the Schrodinger equation of the general form

eikr

Y(r,0)~ A {e”‘z + 10 } for large r. [11.12]

r

(The spherical wave carries a factor of 1/r, because this portion of || must go
like 1/r2 to conserve probability.) The wave number & is related to the energy of
the incident particles in the usual way: -

2mE
I
As before, I shall assume the target is azimuthally symmetrical; in the more general

case the amplitude f of the outgoing spherical wave could depend on ¢ as well
as 6.

k

[11.13]

3For the moment, there’s not much quantum mechanics in this; what we’re really talking about
is the scattering of waves, as opposed to classical particles, and you could even think of Figure 11.4
as a picture of water waves encountering a rock, or (better, since we’re interested in three-dimensional
scattering) sound waves bouncing off a basketball. In that case we’d write the wave function in the real
form

Alcos(kz) + f(@) cos(kr +8)/r],

and f(@) would represent the amplitude of the scattered sound wave in the direction 4.
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do

FIGURE 11.5: The volume dV of incident beam that passes through area do in
time dt.

The whole problem is to determine the scattering amplitude f(6); it tells
you the probability of scattering in a given direction 6, and hence is related to the
differential cross-section. Indeed, the probability that the incident particle, traveling
at speed v, passes through the infinitesimal area do, in time dt, is (see Figure 11.5)

dP = IWincidentlde = lA|2(v dr) do.

But this is equal to the probability that the particle scatters into the corresponding
solid angle dQ:

|A2| £12
r2

from which it follows that do = | f|2 d<2, and hence

dP = |Ycattered|* dV = (vdt)yr?dg,

_do _ 2
DE) = ~= =17 O [11.14]

Evidently the differential cross-section (which is the quantity of interest to the
experimentalist) is equal to the absolute square of the scattering amplitude (which
is obtained by solving the Schrédinger equation). In the following sections we
will study two techniques for calculating the scattering amplitude: partial wave
analysis and the Born approximation.

Problem 11.2 Construct the analogs to Equation 11.12 for one-dimensional and
two-dimensional scattering.

11.2 PARTIAL WAVE ANALYSIS

11.2.1 Formalism

As we found in Chapter 4, the Schrodinger equation for a spherically symmetrical
potential V(r) admits the separable solutions

v (r.0,9) = R(NY" 6, ¢), [11.15]
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where Y] is a spherical harmonic (Equation 4.32), and u(r) = r R(r) satisfies the
radial equation (Equation 4.37):

K2 d%u RI0+1)
_ \ %4 _— = Eu. 11.16
2m dr? V@ + 2m  r? " " [ ]

At very large r the potential goes to zero, and the centrifugal contribution is neg-
ligible, so

d*u
—— —Kku.

dr
The general solution is . _
u(r) = Ce'¥r 4+ De=i*r,
the first term represents an outgoing spherical wave, and the second an incoming
one—for the scattered wave we evidently want D = 0. At very large r, then,

eikr
R(r)y ~ —,
r

as we already deduced (on physical grounds) in the previous section
(Equation 11.12).

That’s for very large r (more precisely, for kr >> 1; in optics it would be
called the radiation zone). As in one-dimensional scattering theory, we assume
that the potential is “localized,” in the sense that exterior to some finite scattering
region it is essentially zero (Figure 11.6). In the intermediate region (where V can
be ignored but the centrifugal term cannot),* the radial equation becomes

d®u  I1+1)
-——u

_ 2
) P = —k“u, [11.17]

Radiation zone

(kr ) 1)

FIGURE 11.6: Scattering from a localized potential: the scattering region (darker
shading), the intermediate region (lighter shading), and the radiation zone (where
kr > 1).

4What follows does not apply to the Coulomb potential, since 1/r goes to zero more slowly
than 1 /r2, as r — 00, and the centrifugal term does not dominate in this region. In this sense the
Coulomb potential is not localized, and partial wave analysis is inapplicable.
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- TABLE 11.1:  Spherical Hankel functions, h;l)(x) and h;z) x).

1y _ . Q) _.e™

hy =-i% hy =i5%

1 i 1) ; ) i1\ _

hy =(“x—z‘?)e“" hy =(;‘7)e"‘
M_(_3_3_ iY; @_(3i_3 i\ _
& _( x x2+x)eu "2 _(x3 2 x)er

1 ; g
hf N % (—i)+leix

forx>1
N l

and the general solution (Equation 4.45) is a linear combination of spherical Bessel
functions:

u(r) = Arjitkr) + Brny(kr). [11.18]

However, neither j; (which is somewhat like a sine function) nor n; (which is a
sort of generalized cosine function) represents an outgoing (or an incoming) wave.
What we need are the linear combinations analogous to ek and e—ikr ; these are
known as spherical Hankel functions:

B = i +imG; AP @) = i) — in(x). [11.19]

The first few spherical Hankel functions are listed in Table 11.1. At large r, hl(l) (kr)

(the “Hankel function of the first kind”) goes like e'*r /r, whereas hl(z) (kr) (the
“Hankel function of the second kind”) goes like e~ /r; for outgoing waves, then,
we need spherical Hankel functions of the first kind:

R(r) ~ hP (kr). [11.20]

Thus the exact wave function, outside the scattering region (where V(r) =
0), is

V6.9 =ATe+ Y CmhPUen Y e, 0) ). [1121]
I,m
The first term is the incident plane wave, and the sum (with expansion coefficients

Ci,m) represents the scattered wave. But since we are assuming the potential is
spherically symmetric, the wave function cannot depend on ¢. So only terms with

5There’s nothing wrong with 8 dependence, of course, because the incoming plane wave defines
a z direction, breaking the spherical symmetry. But the azimuthal symmetry remains; the incident plane
wave has no ¢ dependence, and there is nothing in the scattering process that could introduce any ¢
dependence in the outgoing wave.
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m = 0 survive (remember, ¥;" ~ ™) Now (from Equations 4.27 and 4.32)

Y26, ¢) =

2041
4+ Pi(cos 6), [11.22]

T

where P; is the /th Legendre polynomial. It is customary to redefine the expansion
coefficients, letting C; o = i'* kA QI+ 1) ar:

Y(r,0)=A [e""z +k Y i@+ 1) a b r) Pi(cos 9)] . [11.23]
1=0

You’ll see in a moment why this peculiar notation is convenient; g; is called the
[th partial wave amplitude. .

Now, for very large r the Hankel function goes like (—i Y1 gikr /kr (Table
11.1), so

ikr
Y(r, 0) ~ A {e""z + f(e)er } , [11.24]
where o
f©O) = Z(zz + 1) a; Pi(cos®). [11.25]

1=0

This confirms more rigorously the general structure postulated in Equation 11.12,
and tells us how to compute the scattering amplitude, f(6), in terms of the partial
wave amplitudes (a;). The differential cross-section is

D) =|fO =) Y @+ 1@ +1)a} ay P(cosb) Py(cosd), [11.26]
[

and the total cross-section is

oo
o =4y (2 +1)|al [11.27]
1=0

(I used the orthogonality of the Legendre polynomials, Equation 4.34, to do the
angular integration.)

11.2.2 Strategy

All that remains is to determine the partial wave amplitudes, gy, for the potential in
question. This is accomplished by solving the Schrédinger equation in the interior
region (where V (r) is distinctly non-zero), and matching this to the exterior solution
(Equation 11.23), using the appropriate boundary conditions. The only problem is
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In particular, the total cross-section is

2
4 & jitka)
o=—Y Q+1 |2 [11.34]
22 i (ka)

That’s the exact answer, but it’s not terribly illuminating, so let’s consider the
limiting case of low-energy scattering: ka < 1. (Since k = 27 /A, this amounts to
saying that the wavelength is much greater than the radius of the sphere.) Referring
to Table 4.4, we note that n;(z) is much larger than j;(z), for small z, so

M @ 3@
Kz @ +in) n(z)
. 2
~ i /@ + i (217 g [11.35]
—@D1z7= 2 201 [ 2D '
and hence
o0 1 4
1 2
oy 1 P20 (ka)*+2,
k2 =20 +1[@D!

But we’re assuming ka < 1, so the higher powers are negligible—in the low
energy approximation the scattering is dominated by the ! = 0 term. (This means
that the differential cross-section is independent of 8, just as it was in the classical
case.) Evidently

o ~4na?, [11.36]

for low energy hard-sphere scattering. Surprisingly, the scattering cross-section is
Sour times the geometrical cross-section—in fact, o is the total surface area of the
sphere. This “larger effective size” is characteristic of long-wavelength scattering
(it would be true in optics, as well); in a sense, these waves “feel” their way around
the whole sphere, whereas classical particles only see the head-on cross-section.

Problem 11.3 Prove Equation 11.33, starting with Equation 11.32. Hint: Exploit
the orthogonality of the Legendre polynomials to show that the coefficients with
different values of / must separately vanish.

* %Problem 11.4 Consider the case of low-energy scattering from a spherical delta-

function shell:
V() =ad(r —a),

where « and a are constants. Calculate the scattering amplitude, f (@), the differ-
ential cross-section, D(6), and the total cross-section, o. Assume ka < 1, so that
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only the / = 0 term contributes significantly. (To simplify matters, throw out all
I # 0 terms right from the start.) The main problem, of course, is to determine
ao. Express your answer in terms of the dimensionless quantity 8 = 2maa/h?.
Answer: o = 4xa?p?/(1 + B)2.

11.3 PHASE SHIFTS

Consider first the problem of one-dimensional scattering from a localized potential
V(x) on the half-line x < 0 (Figure 11.7). 'l put a “brick wall” at x = 0, so a
wave incident from the left,

Vi(x) = Aé**  (x < —a) [11.37]

is entirely reflected

Yr(x) = Be ™ (x < —a). [11.38]
Whatever happens in the interaction region (—a < x < 0), the amplitude of the
reflected wave has got to be the same as that of the incident wave, by conservation
of probability. But it need not have the same phase. If there were no potential at

all (just the wall at x = 0), then B = — A, since the total wave function (incident
plus reflected) must vanish at the origin:

Yox) = A (e""x - e'"””‘) (V(x) =0). [11.39]
If the potential is not zero, the wave function (for x < —a) takes the form

‘ Y(x) = A (e”‘" _ e"<25"“‘>) (V(x) #0). [11.40]

~—— Bgikx

— > Aekx

FIGURE 11.7:  One-dimensional scattering from a localized potential bounded on the
right by an infinite wall.
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The whole theory of scattering reduces to the problem of calculating the phase
shift’ & (as a function of k, and hence of the energy E = h*k%/2m), for a spec-
ified potential. We do this, of course, by solving the Schrodinger equation in the
scattering region (—a < x < 0), and imposing appropriate boundary conditions
(see Problem 11.5). The virtue of working with the phase shift (as opposed to the
complex amplitude B) is that it illuminates the physics (because of conservation
of probability, all the potential can do is shift the phase of the reflected wave) and
simplifies the mathematics (trading a complex quantity—two real numbers—for a
single real quantity).

Now let’s return to the three-dimensional case. The incident plane wave
(Ae'*?) carries no angular momentum in the z direction (Rayleigh’s formula con-
tains no terms with m # 0), but it includes all values of the fotal angular momen-
tum ( =0, 1, 2, ...). Because angular momentum is conserved (by a spherically
symmetric potential), each partial wave (labelled by a particular /) scatters inde-
pendently, with (again) no change in amplitude®—only in phase. If there is no
potential at all, then 9 = Ae'*?, and the Ith partial wave is (Equation 11.28)

¥ = Ai' 2 + 1) jikr) Pi(cos8)  (V(r) =0). [11.41]
But (from Equation 11.19 and Table 11.1)

1 1 . .
=3 [h“)(x) + hl‘z)(x)} = [(—i)’“e”‘ + il+1e“”‘] (x> 1). [11.42]
So for large r

QL +1)
A——=
2ikr

The second term in square brackets represents an incoming spherical wave; it is
unchanged when we introduce the scattering potential. The first term is the outgoing
wave; it picks up a phase shift §;:

A 2 .+ D
2ikr

VACHN [e“" - (—1)le—”"] Pi(cos8) (V(r) = 0). [11.43]

O ~ [e"<’"+251> - (—1)’e—”"] Picos8) (V(r)#0). [11.44]
Think of it as a converging spherical wave (due exclusively to the h? component
, g ! p
in e*?), which is phase shifted 25; (see footnote 7) and emerges as an outgoing

spherical wave (the hl(l) part of ¢'*2 as well as the scattered wave itself).

"The 2 in front of 3 is conventional. We think of the incident wave as being phase shifted once
on the way in, and again on the way out; by § we mean the “one way” phase shift, and the total is
therefore 25.

80ne reason this subject can be so confusing is that practically everything is called an “ampli-
tude:” f(0) is the “scattering amplitude,” a; is the “partial wave amplitude,” but the first is a function
of 8, and both are complex numbers. I'm now talking about “amplitude” in the original sense: the (real,
of course) height of a sinusoidal wave.
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In Section 11.2.1 the whole theory was expressed in terms of the partial wave
amplitudes a;; now we have formulated it in terms of the phase shifts §;. There
must be a connection between the two. Indeed, comparing the asymptotic (large 7)
form of Equation 11.23

Q2+
2ikr

) . 21 +1 :
v~ A [e’k’ -~ (—1)’e-""] i) e""}Pz(cose) [11.45]
r

with the generic expression in terms of §; (Equation 11.44), we find®

1 2i5 s
= — —1) == . 11.4
a E (e ) ke sin(dy) [ 6]

It follows in particular (Equation 11.25) that

1< .
f6) = P Z(zz + 1)é'¥ sin(8;) Pi(cos8) [11.47]
=0
and (Equation 11.27)
4 =3
o= k—f Z(Zl + 1) sin®(§). [11.48]

1=0

Again, the advantage of working with phase shifts (as opposed to partial wave
amplitudes) is that they are easier to interpret physically, and simpler mathemat-
ically—the phase shift formalism exploits conservation of angular momentum to
reduce a complex quantity g; (two real numbers) to a single real one §;.

Problem 11.5 A particle of mass m and energy E is incident from the left on the
potential

0, x < —a),
Vx)=1-V, (ma<x=<0),
00, (x > 0).

(a) If the incoming wave is Ae'** (where k = /2mE /Hh), find the reflected wave.
Answer:

vq [ & — ik cot(k’ ~
Ae_zlka I:k_i_iTz(o)t—E%%] e—'kx, Where kl - 2m(E + V())/h‘

9Although I used the asymptotic form of the wave function to draw the connection between
a; and §;, there is nothing approximate about the result (Equation 11.46). Both of them are constants
(independent of r), and §; means the phase shift in the asymptotic region (where the Hankel functions
have settled down to e 7 /),



