Physics 161 Fall 2010 Exam 4
1\&2] What is the flux of a uniform electric field of $3320 \mathrm{~N} / \mathrm{C}$ directed at an angle of 26° above the x -axis, parallel to the xy plane, through the quarter-pipe shown, with $\mathrm{L}=10 \mathrm{~m}$ and $\mathrm{r}=2 \mathrm{~m}\left(\right.$ in $\left.\mathrm{Nm}^{2} / \mathrm{C}\right)$?

$3 \& 4]$ What is the flux of the electric field $\mathrm{E}=(30 \mathrm{z}+\mathrm{x}) \hat{\imath}+(40 \mathrm{y}+\mathrm{z}) \hat{j}+35 \mathrm{x}{ }^{\wedge} k$ (in N/C) through the flat surface shown?

5\&6] Consider an infinite insulating sheet of charge of charge density $0.003 \mathrm{C} / \mathrm{m}^{2}$. What is the difference in electrical potential (in Volts) between a point in the sheet, P' and a point 5 m above the sheet, P ?

7\&8] Suppose now that a point charge of $\mathrm{Q}=0.001 \mathrm{C}$ is placed 5 m to the left of point P . Now, what is the difference in potential of these two points?

On the real exam, the sheet might be a line of charge.

$9 \& 10]$ An electric field is given by $\mathrm{E}=40 \mathrm{xî}$. (in N / C) What is the difference in potential between $x=0$ and $x=3$, in V ?

11] An electric potential is given by $V=6000 x^{3}$ in volts, x in meters. What is the electric field direction at $\mathrm{x}=-3 \mathrm{~m}$?
$\mathrm{A}]+\mathrm{B}]$ -
C] $\mathrm{E}=0$.

12\&13] What is the magnitude of the electric field in problem 7? (in N/C)
14\&15] A charge is moved along the quarter circle path shown, from $x=3 \mathrm{~m}$ to $\mathrm{y}=3 \mathrm{~m}$. How much work (in J) does the electric field do on the charge, $Q=6 \mathrm{C}$?

