Physics 161 Fall 2011 Midterm Exam 3

10 Answer scantron. Last Name first.

Sit in odd # seats. Cell phones off. Closed Book.

Please keep your eyes on your own paper.

You may be photographed during this exam (by me) if you appear to be copying, using a cell phone, or otherwise cheating.

Equations

Sources of B

$$\mu_0 = 4\pi \cdot 10^{-7} \text{ Tm/A}$$

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$$

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$$

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \hat{r}}{r^2}$$

Responses to B

$$\vec{F} = q\vec{v} \times \vec{B}$$

$$d\vec{F} = Id\vec{l} \times \vec{B}$$

Torque on current loop:

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$
 $\vec{\mu} = I\vec{A}$

Resistors and Circuits

$$I = nqv_d A$$

$$\vec{J} = nq\vec{v}_d$$

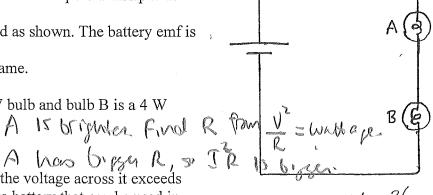
$$V = IR$$
 Ohm's Law

$$R = \frac{\rho L}{A}$$
 cylindrical resistor

$$P = IV$$

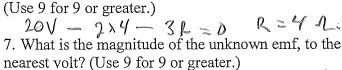
$$P_R = I^2 R = V^2 / R$$
 power in a resistor

$$R_{eq} = R_1 + R_2 + \dots$$
 in series

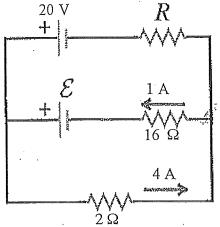

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$
 in parallel

$$q = C\mathcal{E}(1 - e^{-t/RC})$$
 charging $q = q_0 e^{-t/RC}$ discharging

The power rating (wattage) on two low-voltage light bulbs is the power dissipated when 6V is applied. Assume that the brightness of a bulb is proportional to the power dissipated.


- 1. Two **identical** bulbs are wired as shown. The battery emf is 6V. Which bulb is brighter?
- A] A B] B (C) they are the same.
- 2. Now instead, bulb A is a 1 W bulb and bulb B is a 4 W bulb. Which is brighter?

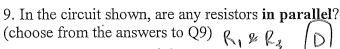
 (Choose answers from above.)
- 3. If either bulb will blow up if the voltage across it exceeds 6.4V, what is the highest voltage battery that can be used in this circuit? (to the nearest V, use 9 for 9 or greater.)



$$R_{A} = \frac{36}{7} = 36 \Omega$$
 $V_{A} = \frac{36}{36+9}$ V_{000}
 $R_{B} = \frac{36}{7} = 9 \Omega$ $= 6.4 V$.
 $V_{000} = 8V$.

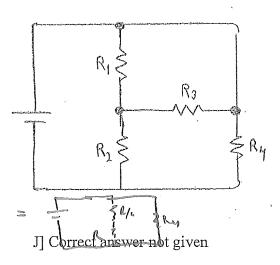
4. A resistor has the shape of a truncated cone. The sn	nall end has a diameter of 1 mm.	The large end
has a diameter of 2 mm. A current of 1 ampere flows	through the resistor. What is the r	atio of the
electric field just inside the small end to the field just	inside the large end? Esmall	Alor 4
electric field just inside the small end to the field just A] 4 B] 2 C] they are equal D] ½ E] ¼ F G] Cannot determine without knowing the resistor len] Both fields are zero ()	Asmel
5. In the circuit at right, what is the current through	20 V	ת
resistor R, to the nearest ampere?	20 V	K
4-1= 3A		√ √~
6. What is the resistance R, to the nearest ohm?	. 3	
(Use 9 for 9 or greater.)		

$$\Sigma - 244 - 1x16 = 0$$
 $\Sigma = 24V$.


8. In the circuit shown, are any resistors **in series**?

A] R₁ & R₂ B] R₂ & R₃ C] R₃ & R₄

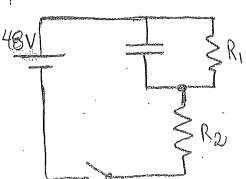
D] R₁ & R₃ E] R₁, R₃ & R₄ F] R₂ & R₄


G] Both R₁ & R₂ and R₃&R₄

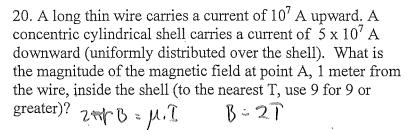
H] Both R₁ & R₃ and R₂&R₄

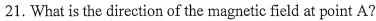
10. If all resistors are the same, what fraction of the current from the battery flows through R₄?

A] ½ B] 1/3 C] 2/5 D] ½ E] 3/5 F] 2/3 G] ¾ H] 7/9 I] 0



11. $R_1 = 16$ Ohms and $R_2 = 8$ Ohms. Immediately after closing the switch, what is the current through R_2 , to the nearest ampere?


Lephace Cap with the T = 48V/8a = 6A.


12. A long time after closing the switch, what is the current through R₂, to the nearest ampere?

Replace cap with open commit

	TOP VIEW
13. A very long wire carries a current I, as shown at right. A current loop is near the wire. Is there a net torque or a net force on the current loop?	
A] torque only C] both D] neither	SIDE VIEW
14. If there is a net torque, in what direction does it tend to rotate the loop as seen in the top view ? A] CW B] CCW C] there is no torque	I A
15. If there is a net force, in what direction does it push as seen in the side view? A right B] left C] up D] down E] out of page G] there is no net force	
Attract force on right wire > regularion in les	
16. A charge of +1 C is moving a 3 m/s in the direction shown. field of 2 T exists throughout all space. What is the magnitude of the charge (to the nearest N)? 17. What is the trajectory of the charge? A] a circle, above the page except at this point B] a circle, below the page except at this point C] a helix, mostly above the page, moving upward (along B) D] a helix, mostly below the page, moving upward (along B) E] a helix, mostly above the page, moving along v F] a helix, mostly below the page, moving along v G] a parabola, arcing down to the right H] a parabola, arcing to the left	of the force on \mathbb{B} \mathbb{A} \mathbb{A} \mathbb{A}
18. Two long wires are oriented as shown at right; each carries a current 10 ⁷ A. What is the magnitude of the magnetic field at point P, 1 m from each wire (to the nearest T; use 9 for 9 or greater)? 270 8 = M 2	# 281 .
A] Is there a force or torque on wire 2? A] torque only B] force only C] both D] neither	wire 1

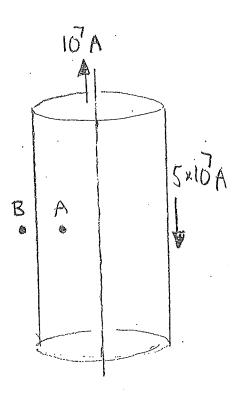
Al left (away from wire)

B] right, toward wire

C] down

D] up

El into page

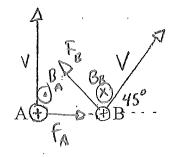

(F)) out of page

G] insufficient information

22. What is the magnitude of the magnetic field at point B, 2 m away from the wire, outside the shell (to the nearest T)?

Ione = 4×18 $\mathcal{B} = \mathcal{A} \mathcal{T}$, 23. What is the direction of the magnetic field at B?

Choose from the answers to Q21.


24. Two equal positive charges move with the same speed, but B is moving at 45° to the line between them, as shown. If the magnetic force on particle A is 1 N, what is the magnetic force on B, in N?

r is same, but Bara N weaken of Sind = 1/2: f= IVX8

E] 1 Л 0

25. What is the direction of the magnetic forces on these particles?

- A] Directly away from each other
- B] Directly towards each other
- Cl Force on A is towards B; Force on B is 45° up and left
- D Force on A is 45° down and right; Force on B is 45° up and left
- E] Force on A is towards B; Force on B is 45° down and right
- F] Force on both is out of the page
- G] Force on A is out of the page; Force on B is into the page
- H] Force on both is into the page
- I] Force on A is down; Force on A is 45° up and left
- If Force on A is out of the page; there is no force on B.

- 26. Are the linear momentum and angular momentum of these two particles conserved?
- A] yes, both are conserved
- B] linear momentum is, but angular momentum is not
- (angular momentum is, but linear momentum is not Dineither angular nor linear momentum is conserved