The solution of the solution

Figure **31.25** Problem 31.42.

31.51. An L-R-C series circuit is connected to an ac source of constant voltage amplitude V and variable angular frequency ω.
(a) Show that the current amplitude, as a function of ω, is

$$I = \frac{V}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}$$

(b) Show that the average power dissipated in the resistor is

$$P = \frac{V^2 R / 2}{R^2 + (\omega L - 1/\omega C)^2}$$

(c) Show that I and P are both maximum when $\omega=1/\sqrt{LC}$; that is, when the source frequency equals the resonance frequency of the circuit. (d) Graph P as a function of ω for V=100 V, $R=200 \Omega$, L=2.0 H, and $C=0.50 \mu\text{F}$. Compare to the light purple curve in Fig. 31.19. Discuss the behavior of I and P in the limits $\omega=0$ and $\omega\to\infty$.

31.54. The *L-R-C* Parallel Circuit. A resistor, inductor, and capacitor are connected in parallel to an ac source with voltage amplitude V and angular frequency ω . Let the source voltage be given by $v = V\cos \omega t$. (a) Show that the instantaneous voltages v_R , v_L , and v_C at any instant are each equal to v and that $i = i_R + i_L + i_C$, where i is the current through the source and i_R , i_L , and i_C are the currents through the resistor, the inductor, and the capacitor, respectively. (b) What are the phases of i_R , i_L , and i_C with respect to v? Use current phasors to represent i, i_R , i_L , and i_C . In a phasor diagram, show the phases of these four currents with respect to v. (c) Use the phasor diagram of part (b) to show that the current amplitude I for the current i through the source is given by $I = \sqrt{I_R^2 + (I_C - I_L)^2}$. (d) Show that the result of part (c) can be written as I = V/Z, with $1/Z = \sqrt{1/R^2 + (\omega C - 1/\omega L)^2}$.