18.10. An empty cylindrical canister 1.50 m long and 90.0 cm in diameter is to be filled with pure oxygen at 22.0°C to store in a space station. To hold as much gas as possible, the absolute pressure of the oxygen will be 21.0 atm. The molar mass of oxygen is 32.0 g/mol. (a) How many moles of oxygen does this canister hold? (b) For someone lifting this canister, by how many kilograms does this gas increase the mass to be lifted? 18.14. A diver observes a bubble of air rising from the bottom of a lake (where the absolute pressure is 3.50 atm) to the surface (where the pressure is 1.00 atm). The temperature at the bottom is 4.0°C, and the temperature at the surface is 23.0°C. (a) What is the ratio of the volume of the bubble as it reaches the surface to its volume at the bottom? (b) Would it be safe for the diver to hold his breath while ascending from the bottom of the lake to the surface? Why or why not? 18.42. Perfectly rigid containers each hold n moles of ideal gas, one being hydrogen $(H_2)$ and other being neon (Ne). If it takes 100 J of heat to increase the temperature of the hydrogen by 2.50°C, by how many degrees will the same amount of heat raise the temperature of the neon?