Name EXAM 2 POLUTIONS

Physics 161 Exam 2 Spring 2010 No notes, calculators OK.

Problem 1. Two parallel plate capacitors are wired together as shown. The capacitors each have capacitance C. A total charge +Q is put on the top wire, -Q on the bottom wire.

- a) What is the potential difference between points S and T? (Answer in terms of Q, C)
- ς b) What is the energy stored in the capacitors? (Give your answer in terms of Q, C, ε_0)

A dielectric, with dielectric constant K = 3, is now added to capacitor A, and fills the gap.

- c) What is the potential difference between points S and T?
- d) What is the charge on each capacitor?
- 6 e) What is the energy stored in the capacitor A, in capacitor B, and the total?
- 2) f) If your answer to (e) (total) differs from your answer to (b), explain where the energy went/ came from.

a)
$$V = \frac{Q}{Cey} = \frac{Q}{2C}$$
.

b)
$$U = \frac{1}{2}C_{ef}V^{2} = \frac{1}{2}ZC \frac{G^{2}}{4C^{2}} = \frac{G^{2}}{4C}$$

d)
$$Q_A = C_A V = 3C \cdot \frac{Q}{4C} = \frac{3}{4}Q$$

$$Q_B = C_B V = C \cdot \frac{Q}{4C} = \frac{4}{4}Q$$

e)
$$U_A = \frac{1}{2} \frac{Q_A^2}{C_A} = \frac{1}{2} \frac{9}{1630} = \frac{3}{32} \frac{Q_A^2}{C}$$
.
 $U_B = \frac{1}{2} \frac{Q_A^2}{C_B} = \frac{1}{2} \frac{1}{16} \frac{Q_A^2}{C} = \frac{3}{32} \frac{Q_A^2}{C}$

Name	

for pot charge.

Problem 2. A perfectly insulating spherical shell has a total charge of -Q distributed uniformly throughout.

The inner radius of the shell is R/2; the outer radius is R.

- a) Find the electric field for points in the cavity (r < R/2) and outside the shell (r > R). (Your answer may include r, R, Q, ϵ_0)

 Twick E = 0 by Gauss. Outside $E = \frac{1}{4\pi E_0} \frac{Q}{r}$ (toward c)

 Now, a point charge +Q is placed at point P, just at the surface of the shell.
- Superposition = D only Ep contributes $E = \frac{1}{4\pi\epsilon_0} \frac{G}{R^2}$ to the left.
- Superposition. Add the two felds shown below.
 - 8 d) What is the electric potential at point T? (Take V=0 at ∞) 500 below-

By superposition, Va+V,=0 at.

e) A high energy photon causes an electron to be emitted from the surface at point T. The electron leaves T with a speed of 100 m/s. When the electron is very far from the sphere, what is its speed? (Your answer may contain the mass of the electron, me and the charge on the electron—e.)

ANT. V₁ = V₁ = OV, N V₂ = V₃

Name		

Problem 3. A charge of +Q is situated some distance above an uncharged **conducting metal cube** as shown on the following page. There is a cubical hole in the metal cube. (The hole is completely surrounded by metal: the picture shows a cross section.)

- (MAX)
 - a) Sketch E field lines on the diagram. Use a reasonable number of lines, say six or eight.
 - b) Show on the diagram where there is charge density (excess + or excess -) on or in the metal cube. Use + and signs for the excess charge.
 - c) Given that point S has a potential of +4 V and point P has a potential of +2 V, sketch (approximately) equipotential lines for +4V, +3V, +2V, +1V and (if there are any) 0V, -1V, etc. Label each with its potential. (Use the usual convention that V=0 at infinity.)
 - 6) Treating point P as the origin, the potential near P (just above the cube) is V=3y + 2, where V is in volts and y in meters. What is the electric field at P? Show on the sketch.

$$\vec{E} = -\vec{\partial} V \Rightarrow E_x = -\vec{\partial} V \qquad E_y = -\vec{\partial} V \qquad E_z = -\vec{\partial}$$

e) What is the surface charge density on the cube right below P? Your answer may contain ε_0 .

$$\oint E dA = \frac{q_{enc}}{\epsilon_0} \qquad EA = \frac{q_{enc}}{\epsilon_0} \quad \epsilon_0 E = \sigma \qquad \sigma = -3\epsilon_0$$

f) What is the field at point T in the hole?

O. Use Gauss' Law in metal

