$\sum_{x'=\gamma(x-Vt)} x' = \gamma(x-Vt)$ $ct' = \gamma(ct - \frac{Vx}{c})$	$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$	$f = f_0 \sqrt{\frac{1 - \nu/c}{1 + \nu/c}}$ $\Delta s = \sqrt{c^2 t^2 - x^2}$	$v_{o/a} = \frac{v_{o/b} + v_{b/a}}{1 + \frac{v_{o/b}v_{b/a}}{c^2}}$
$\vec{P} = (\gamma mc, \gamma mv_x,)$	$F_x = F_x'$	$F_{y} = F_{y}^{\prime}/\gamma$	
h=4.14x10 ⁻¹⁵ eVs	$c=3x10^8 \text{ m/s}$		
A] 0 B] 0.1 c C] 0.2 c D] 0.3 c	DExam 5 LAST NAM nass) moving at 0.943c collides k-together lump (to the nearest E)0.4 c F] 0.5 c G] 0.6 c H] 0.7 c otter (the kinetic energy "lost" is of the hot lump (choose the close	in an inelastic collision goe	0.8 c 0.9 c + (4mc, 0) = $-\frac{1}{4}$ $\sqrt{4} = \frac{2.83}{3}$ C = $-\frac{1}{4}$ es into heat)
A] 4m B] 5m	E] 8m F] 9m	I] TI	12m 13m M6 = 6.42 m
C) 6m D] 7m	G] 10m H] 11m	•1	. 18 6. 1210
positive charge, perpe	ges as shown; the negative chandicular to v. Consider the election is reference frame:	ctromagnetic forces exerted	by the positive charge on

- The magnitude of the electric force from the positive charge on each negative charge is the same B] The magnitude of the electric force on the upper charge is smaller than on the lower charge (but still nonzero)
- C] The magnitude of the electric force on the lower charge is larger than on the upper charge (but still nonzero)
- D] The electric force on the upper charge is zero; the electric force on the lower charge is nonzero.
- E] The electric force on the lower charge is zero; the electric force on the upper charge is nonzero.
- F] The electric force on either charge (caused by the + charge) is zero.
- G] No statement is true
- 4] Which of the statements above is true in the reference frame of the + charge?
- 5] In the frame shown, the total electromagnetic force on each negative charge (from the + charge):

(7mc, 2.83m

B

- A] is the same for both charges B] is larger for the the top charge
- B) is larger for the top charge

 Chis larger for the bottom charge

 TOP CHARGE ALSO MAS MAGNETIC

 FORCE,
- 6] In the frame of the + charge, which of the statements in 5 is true?

All F is obertical, so same ture. [A]

upposiNG ATTRACTION

7] A wire in the lab carries a current of electrons with a linear charge density of $4x10^7$ e/m, each moving at
0.01 c. The wire is overall electrically neutral (in the lab.) In the rest frame of the electrons, their charge
density is

(A)
$$< 4x10^7 \text{ e/m}$$

B] = $4x10^7 \text{ e/m}$
C] $> 4x10^7 \text{ e/m}$

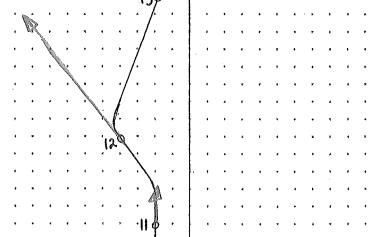
8] An electron moves near the wire, in the same direction as the electrons in the wire and at the same speed.

The force on the electron:

from QVXB or from Relativity,

A] is zero

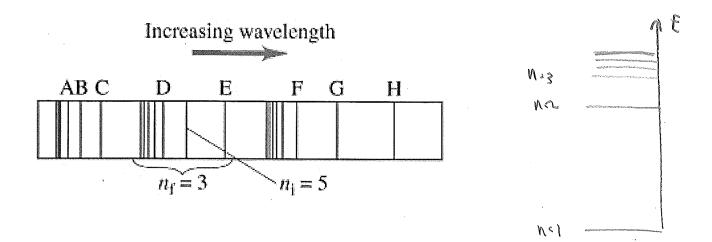
B) is directed toward the wire T is directed away from the wire


D] is toward the wire in the lab frame, but away from the wire in the electron rest frame

E] is away from the wire in the lab frame, but toward the wire in the electron rest frame

9&10] What is the net charge density of the wire, in charges per meter, as seen by this electron?

(You will probably want to use the Taylor expansion $\gamma = 1 + \frac{1}{2} \frac{v^2}{c^2}$ for small v/c. Don't forget the + nucleii!)


11,12,13] Sketch energy-momentum 4-vectors on the worldline shown, at the points indicated.

14&15] Light shines on a metal with a work function of 2.6 eV. What is the longest wavelength that can eject an electron (in nm?) $E = \frac{hc}{\lambda}$ $\lambda = \frac{hc}{E} = 4.78 \times 10^{-7} \text{ M} = 478 \text{ MM}$.

16] If the intensity of light (at a wavelength that can emit electrons) is increased:

- Anthe rate at which electrons are emitted will increase
- B] the kinetic energy of the emitted electrons will increase
- C] both will increase
- D] neither will increase

17] The spectrum of hydrogen is shown. Which letter corresponds to the transition from $n_i=6$ to $n_f=4$?

18] The ionization energy of hydrogen is 13.6 eV. What is the energy, to the nearest 1/10th of an eV, of the photon emitted? Enter 9 for anything 0.9 eV or larger.