HW Solution 14

December 6, 2010

43.20

(a) ${ }_{39}^{90} \mathrm{Sr} \rightarrow \beta^{-}+{ }_{39}^{90} \mathrm{X}$. X has 39 protons and 90 protons plus neutrons, so it must be ${ }^{90} Y$.
(b) Use base 2 because we know the half life.

For $A=A_{0} 2^{-t / T_{1 / 2}}$ and $0.01 A_{0}=A_{0} 2^{-t / T_{1 / 2}}, t=-\frac{T_{1 / 2} \log 0.01}{\log 2}=190 y$.
43.46
(a) ${ }_{14}^{28} S i+\gamma \Rightarrow{ }_{12}^{24} M g+{ }_{Z}^{A} X$.
$A=28-24=4, Z=14-12=2$, therefore X is an α particle.
(b) $E_{\gamma}=-\Delta m c^{2}=(23.985042 u+4.002603 u-27.976927 u)(931.5 \mathrm{MeV} / u)=9.984 \mathrm{MeV}$
43.54

The α-particle will have $\frac{226}{230}$ of the released energy.
$\frac{226}{230}\left(m_{T h}-m_{R a}-m_{\alpha}\right)=5.032 * 10^{-3} u=4.69 \mathrm{MeV}$.

