HW Solution 1

August 24, 2010
32.6.
(a) $f=\frac{c}{\lambda}=\frac{3.00 * 10^{8} m / s}{435 * 10^{-9} \mathrm{~m}}=6.90 * 10^{14} \mathrm{~Hz}$
(b) $B_{\text {max }}=\frac{E_{\text {max }}}{c}=\frac{2.70 * 10^{-3} \mathrm{~V} / \mathrm{m}}{435 * 10^{-9} \mathrm{~m}}=9.00 * 10^{-12} \mathrm{~T}$
(c) $k=\frac{2 \pi}{\lambda}=1.44 * 10^{7} \mathrm{rad} / \mathrm{m}, \omega=2 \pi f=4.34 * 10^{15} \mathrm{rad} / \mathrm{s}$
$\vec{E}(z, t)=\hat{i} E_{\text {max }} \cos (k z+\omega t)=\hat{i}\left(2.70 * 10^{-3} \mathrm{~V} / \mathrm{m}\right) \cos \left[\left(1.44 * 10^{7} \mathrm{rad} / \mathrm{s}\right) z+\left(4.34 * 10^{15} \mathrm{rad} / \mathrm{s}\right) t\right]$
$\because \vec{E} \times \vec{B}$ is in the $-\hat{k}$ direction
$\therefore \vec{B}(z, t)=-\hat{j} B_{\max } \cos (k z+\omega t)=-\hat{j}\left(9.00 * 10^{-12} \mathrm{~V} / \mathrm{m}\right) \cos \left[\left(1.44 * 10^{7} \mathrm{rad} / \mathrm{s}\right) z+\left(4.34 * 10^{15} \mathrm{rad} / \mathrm{s}\right) t\right]$
32.8.
(a) $B_{\max }=\frac{E_{\max }}{c}=1.25 \mu \mathrm{~T}$
(b) $f=\frac{\omega}{2 \pi}=9.50 * 10^{14} \mathrm{~Hz}$
$\lambda=\frac{2 \pi}{k}=3.16 * 10^{-7} \mathrm{~m}$
$T=\frac{1}{f}=1.05 * 10^{-15} s$
The wavelength is too short for the light to be visible to humans.
(c) $c=f \lambda=\left(9.50 * 10^{14} \mathrm{~Hz}\right)\left(3.16 * 10^{-7} \mathrm{~m}\right)=3.00 * 10^{8} \mathrm{~m} / \mathrm{s}$.

32.10 .

(a) The wave is traveling in the $-x$ direction.
(b) $\because k=\frac{2 \pi}{\lambda}=\frac{2 \pi f}{c}$
$\therefore f=\frac{k c}{2 \pi}=6.59 * 10^{11} \mathrm{~Hz}$
(c) For \vec{B} is in the $+y$ direction and wave is traveling in the $-x$ direction, therefore \vec{E} is in the $+z$ direction.
$\vec{E}(x, t)=\hat{k} c B(x, t)=\hat{k}(2.48 \mathrm{~V} / \mathrm{m}) \sin \left[\left(1.38 * 10^{4} \mathrm{rad} / \mathrm{m}\right) x+\left(4.14 * 10^{12} \mathrm{rad} / \mathrm{s}\right) t\right]$

