HW Solution 2

September 7, 2010
33.2 .

(a) $\theta+\phi=90^{\circ}$ and $\beta+\phi=90^{\circ} \therefore \beta=\theta$
$\frac{\alpha}{2}+\beta=90^{\circ}$ and $\alpha=180^{\circ}-2 \theta$
(b) $\theta=\frac{1}{2}\left(180^{\circ}-\alpha\right)=\frac{1}{2}\left(180^{\circ}-45^{\circ}\right)=45^{\circ}$

33.20.

As show in the figure, $r=d \tan \theta_{\text {crit }}$.
$\because n_{a} \sin \theta_{c r i t}=n_{b} \sin \left(90^{\circ}\right)$ and $n_{a}=1.333, n_{b}=1.00$
$\therefore \theta_{c r i t}=48.6^{\circ}, r=11.3 \mathrm{~cm}, A=\pi r^{2}=401 \mathrm{~m}^{2}$

33.46.

$\theta_{b}=\arcsin \left(\frac{n_{a}}{n_{b}} \sin \theta_{a}\right)=36^{\circ}$.
\therefore the distance along the bottom of the pool from directly below where the light enters to where it hits the bottom is
$x=(4.0 \mathrm{~m}) \tan \theta_{b}=2.9 \mathrm{~m}$.
$x_{\text {totle }}=1.5 m+x=4.4 m$

