HW Solution 5

October 4, 2010

35.50

(a) $E_{p}^{2}=E_{1}^{2}+E_{2}^{2}-2 E_{1} E_{2} \cos (\pi-\phi)=E^{2}+4 E^{2} \cos \phi=5 E^{2}+4 E^{2} \cos \phi$
$I=\frac{1}{2} \delta_{0} c E_{p}^{2}=\delta_{0} c\left[\left(\frac{5}{2} E^{2}\right)+\left(\frac{4}{2} E^{2}\right) \cos \phi\right]$
$\phi=0 \Rightarrow I_{0}=\frac{9}{2} \delta_{0} c E^{2}$
$\therefore I=I_{0}\left[\frac{5}{9}+\frac{4}{9} \cos \phi\right]$
(b) The graph is shown in the figure. $I_{\text {min }}=\frac{1}{9} I_{0}$ which occurs when $\phi=n \pi(n$ odd $)$.

36.53

(a) $I=\frac{1}{2} I_{0}$ so $\frac{\sin \beta / 2}{\beta / 2}=\frac{1}{\sqrt{2}}$

Let $x=\beta / 2$, the equation for x is $\frac{\sin x}{x}=\frac{1}{\sqrt{2}}=0.7017$
$\therefore x=1.39 \mathrm{rad}, \beta=2.78 \mathrm{rad}$
$\Delta \theta=2 \theta_{+}, \sin \theta_{+}=\frac{\lambda \beta}{2 \pi a}=0.4425\left(\frac{\lambda}{a}\right)$
(i) For $\frac{a}{\lambda}=2, \sin \theta_{+}=0.2212, \theta_{+}=12.78^{\circ}, \Delta \theta=25.6^{\circ}$
(ii) For $\frac{a}{\lambda}=5, \sin \theta_{+}=0.0885, \theta_{+}=5.077^{\circ}, \Delta \theta=10.2^{\circ}$
(iii) For $\frac{a}{\lambda}=10, \sin \theta_{+}=0.04425, \theta_{+}=2.536^{\circ}, \Delta \theta=5.1^{\circ}$
(b)
(i) For $\frac{a}{\lambda}=2, \sin \theta_{0}=\frac{1}{2}, \theta_{0}=30.0^{\circ}, 2 \theta_{0}=60^{\circ}$
(ii) For $\frac{a}{\lambda}=5, \sin \theta_{0}=\frac{1}{5}, \theta_{0}=11.54^{\circ}, 2 \theta_{0}=23.1^{\circ}$
(iii) For $\frac{a}{\lambda}=10, \sin \theta_{0}=\frac{1}{10}, \theta_{0}=5.74^{\circ}, 2 \theta_{0}=11.5^{\circ}$

36.69

(a) $d \sin \theta=m \lambda$. Place $1^{s t}$ maximum at ∞ or $\theta=90^{\circ} . d=\lambda$. If $d<\lambda$, this puts the first maximum "beyond ∞." Thus, if $d<\lambda$ there is only a single principal maximum.
(b)At a principal maximum when $\delta=0$, the phase difference due to the path difference between adjacent slits is $\Phi_{\text {path }}=2 \pi\left(\frac{d \sin \theta}{\lambda}\right)$. This just scales 2π radians by the fraction the wavelength is of the path difference between adjacent sources. If we add a relative phase δ between sources, we still must maintain a total phase difference of zero to keep our principal maximum.

$$
\Phi_{p a t h} \pm=0 \Rightarrow \frac{2 \pi d \sin \theta}{\lambda}= \pm \delta \text { or } \theta=\sin ^{-1}\left(\frac{\delta \lambda}{2 \pi d}\right)
$$

(c) $d=0.02 m$. Let $\theta=45^{\circ}$. For $f \lambda=c$,

$$
\delta_{\max }= \pm \frac{2 \pi(0.02 \mathrm{~m})\left(8.8 * 10^{9} \mathrm{~Hz}\right) \sin 45^{\circ}}{3.00 * 10^{8} \mathrm{~m} / \mathrm{s}}= \pm 2.61 \mathrm{rad}
$$

