HW Solution 13

November 30, 2010

41.36

(a) For l = 3, $m_l = \pm 3, \pm 2, \pm 1, 0$ and $m_s = \pm \frac{1}{2}$ For l = 2, $m_l = \pm 2, \pm 1, 0$ and $m_s = \pm \frac{1}{2}$ For l = 1, $m_l = \pm 1, 0$ and $m_s = \pm \frac{1}{2}$ (b) For N shell n = 4. For an *f*-electron, l = 3. $\therefore L = \sqrt{12\hbar}, L_z = m_l\hbar = \pm 3, \pm 2, \pm 1, 0$ with maximum $3\hbar$, $S = \sqrt{3/4\hbar}$ for all electrons. (c) For *d*-state electron, l = 2, $L = \sqrt{6\hbar}, L_z = m_l\hbar$ with maximum $2\hbar$. $\cos\theta_{min} = \frac{L_z}{L} = \frac{2}{\sqrt{6}}, \theta = 35.3^{\circ}$. $\cos\theta_{min} = -\frac{2}{\sqrt{6}}, \theta = 144.7^{\circ}$. (d) This is not possible since l = 3 for an *f*-electron, but in the M shell the maximum value of the state of the maximum value of the state of the state since l = 3 for an *f*-electron.

This is not possible since l = 3 for an *f*-electron, but in the M shell the maximum value of l is 2.

41.50

(a) The energy shift from zero field is $\Delta U_0 = m_l \mu_B B$. For $m_l = 2$, $\Delta U_0 = 1.62 * 10^{-4} eV$. For $m_l = 1$, $\Delta U_0 = 8.11 * 10^{-5} eV$. (b) $|\Delta \lambda| = \lambda \frac{|\Delta E|}{E_0}$, where $E_0 = 13.6 eV(1/4 - 1/9)$, $\lambda_0 = 6.563 * 10^{-7}m$ and $\Delta E = 1.62 * 10^{-14} - 8.11 * 10^{-5} = 8.09 * 10^{-5} eV$. $\therefore |\Delta \lambda| = 0.0281 nm$.

The wavelength corresponds to a larger energy change, and so the wavelength is smaller.