Physics 262 Fall 2010 Practice Exam \#6
1\&2. A wavefunction for a particle is shown:
$\psi(x)=a \sqrt{x}$, for $0<\mathrm{x}<\mathrm{L} . \mathrm{L}=0.01 \mathrm{~m}$.
What is the value of a to properly normalize this wavefunction? (in m^{-1})

3\&4. What is the probability the particle will be found between 0 and $\mathrm{L} / 2$?

5\&6]. A particle is in the mixed wavefunction $\psi=a\left(0.3 \psi_{1}+0.1 \psi_{2}\right)$, where ψ_{1} and ψ_{2} are properly normalized stationary states of the potential.
What is a, for proper normalization of the mixed wave?

7\&8] What is the probability that the particle will be observed in state ψ_{1} ?
9. (3 pts) For the infinite potential well shown (next page), sketch as accurately as you can the $n=4$ quantum state, with energy 9 eV .
10. (3 pts) Sketch the $\mathrm{n}=2$ quantum state. What is its energy, approximately?

11. (1 pt) Draw the $\mathrm{n}=3$ Bohr wave on the orbit below.
$12 \& 13$. Suppose h were $10^{-10} \mathrm{Js}$. What would be the radius of the orbit in angstroms?
Recall $F=\frac{m v^{2}}{r}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r^{2}}$

