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7-3.  

  

θ

ρ
φ θ

R

 
If we take angles θ and φ as our generalized coordinates, the kinetic energy and the potential 
energy of the system are 

  ( ) 2 21
2 2

T m R I
1

ρ θª º= − +¬ ¼
� �φ  (1) 

  ( )cosU R R mρ θª= − −¬ gº¼  (2) 

where m is the mass of the sphere and where U = 0 at the lowest position of the sphere. I is the 
moment of inertia of sphere with respect to any diameter. Since ( ) 22 5I mρ= , the Lagrangian 
becomes 

  ( ) ( )2 2 2 21 1
cos

2 5
U m R m R R mgρ θ ρ φ ρ θª= − = − + − − −¬� �L T  (3) º¼

When the sphere is at its lowest position, the points A and B coincide. The condition A0 = B0 
gives the equation of constraint: 

  ( ) ( ),f Rθ φ ρ θ ρφ 0= − − =  (4) 

Therefore, we have two Lagrange’s equations with one undetermined multiplier: 

  

0

0

fL d L
dt

fL d L
dt

λ
θ θθ

λ
φ φ φ

∂∂ ∂ ºª º− + = »« »∂ ∂∂¬ ¼ »
»

ª º ∂∂ ∂ »− + =« » »∂ ∂ ∂¬ ¼ ¼

�

�

 (5) 

After substituting (3) and f Rθ ρ∂ ∂ = −  and f φ ρ∂ ∂ = −  into (5), we find 

  ( ) ( ) ( )2sin 0R mg m R Rρ θ ρ θ λ ρ− − + − =��− −  (6) 

  22
0

5
mρ φ λρ− − =��  (7) 

From (7) we find λ: 

  
2
5

mλ ρφ= − ��  (8) 

or, if we use (4), we have 

  ( )2
5

m Rλ ρ θ= − − ��  (9) 

Substituting (9) into (6), we find the equation of motion with respect to θ : 
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  2 sinθ ω= −�� θ

)

 (10) 

where ω is the frequency of small oscillations, defined by 

  
(

5
7

g
R

ω
ρ

=
−

 (11) 

7-4.  

  

y

m

x

r

θ
 

If we choose (r,θ ) as the generalized coordinates, the kinetic energy of the particle is 

  ( ) ( )2 2 2 2 21 1
2 2

T m x y m r r θ= + = + �� � �  (1) 

Since the force is related to the potential by 

  
U

f
r

∂
= −

∂
 (2) 

we find 

  
A

U rα
α

=  (3) 

where we let U(r = 0) = 0. Therefore, the Lagrangian becomes 

  ( )2 2 21
2

A
L m r r rαθ

α
= + −��  (4) 

Lagrange’s equation for the coordinate r leads to 

  2 1 0mr mr Arαθ −− + =���  (5) 

Lagrange’s equation for the coordinate θ leads to 

  ( )2 0
d

mr
dt

θ =�  (6) 

Since  is identified as the angular momentum, (6) implies that angular momentum is 
conserved. Now, if we use A, we can write (5) as 

2mr θ =� A

  
2

1
3 0mr Ar

mr
α−− + =

A��  (7) 

Multiplying (7) by , we have r�

  
2

1
3 0

r
mrr Ar r

mr
α−− +

�A��� � =  (8) 
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The potential energy is 

  U m 1 2 12 cos cosgx mgx mg 2φ φ= − − = − +ª º¬ ¼A  (4) 

Therefore, the Lagrangian is 

  ( )2 2 2
1 2 1 2 1 2 1

1
cos 2 cos cos

2
mg 2L m φ φ φ φ φ φ φ φª º= + + − + +ª º¬ ¼« »¬ ¼

� � � �A A  (5) 

from which 

  

( )

( )

( )

( )

2
1 2 1 2 1

1

2 2
1 2 1 2

1

2
1 2 1 2 2

2

2 2
2 1 1 2

2

sin 2 sin

2 cos

sin sin

cos

L
m m

L
m m

L
m mg

L
m m

gφ φ φ φ φ
φ

φ φ φ φ
φ

φ φ φ φ φ
φ

φ φ φ φ
φ

∂ º= − − »∂ »
»

∂ »= + −
»∂
»
»∂ »= − − −

∂ »
»
»∂

= + − »
∂ ¼

� �A A

� �A A�

� �A A

� �A A�

 (6) 

The Lagrange equations for 1φ  and 2φ  are 

  ( ) ( )2
1 2 1 2 2 1 2 1cos sin 2 sin 0

g
φ φ φ φ φ φ+ − + − +�� �

A
2φ φ  (7) =

  ( ) ( )2
2 1 1 2 1 1 2 2cos sin sin 0

g
φ φ φ φ φ φ φ φ+ − − − +�� �

A
=��  (8) 

7-8.  

  
v1

v2

θ2

θ1

U1 U2
y

x

 
Let us choose the x,y coordinates so that the two regions are divided by the y axis: 

  ( )
1

2

0

0

U x
U x

U x

<ª
«=
« >¬

 

If we consider the potential energy as a function of x as above, the Lagrangian of the particle is 

  ( ) ( )2 21
2

L m x y U x= + −� �  (1) 

Therefore, Lagrange’s equations for the coordinates x and y are 
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  ( ) 0
dU x

mx
dx

+ =��  (2) 

  0my =��  (3) 

Using the relation 

  xx x x dpdP dP Pd dx
mx mx

dt dt dx dt m dx
= = = =�� �  (4) 

(2) becomes 

  ( ) 0x x dU xP dP
m dx dx

+ =  (5) 

Integrating (5) from any point in the region 1 to any point in the region 2, we find 

  ( )2 2

1 1

0x x dU xP dP
dx dx

m dx dx
+ =∫ ∫  (6) 

  2 1

2 2

2 1 0
2 2

x xP P
U U

m m
− + − =  (7) 

or, equivalently, 

  2 2
1 1 2

1 1
2 2

mx U mx U+ = +� � 2  (8) 

Now, from (3) we have 

  0
d

my
dt

=�  

and  is constant. Therefore, my�

  1my my2=� �  (9) 

From (9) we have 

  2
1

1 1
2 2

my my=� 2
2�  (10) 

Adding (8) and (10), we have 

  2
1 1 2

1 1
2 2

mv U mv U+ = +2
2

2

 (11) 

From (9) we also have 

  1 1 2sin sinmv mvθ θ=  (12) 

Substituting (11) into (12), we find 

  
1 2

1 2 1 2

2 1 1

sin
1

sin
v U U
v T

θ
θ

ª º−
= = +« »

¬ ¼
 (13) 
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  ( ) 0
dU x

mx
dx

+ =��  (2) 

  0my =��  (3) 

Using the relation 

  xx x x dpdP dP Pd dx
mx mx

dt dt dx dt m dx
= = = =�� �  (4) 

(2) becomes 

  ( ) 0x x dU xP dP
m dx dx

+ =  (5) 

Integrating (5) from any point in the region 1 to any point in the region 2, we find 

  ( )2 2

1 1

0x x dU xP dP
dx dx

m dx dx
+ =∫ ∫  (6) 

  2 1

2 2

2 1 0
2 2

x xP P
U U

m m
− + − =  (7) 

or, equivalently, 

  2 2
1 1 2

1 1
2 2

mx U mx U+ = +� � 2  (8) 

Now, from (3) we have 

  0
d

my
dt

=�  

and  is constant. Therefore, my�

  1my my2=� �  (9) 

From (9) we have 

  2
1

1 1
2 2

my my=� 2
2�  (10) 

Adding (8) and (10), we have 

  2
1 1 2

1 1
2 2

mv U mv U+ = +2
2

2

 (11) 

From (9) we also have 

  1 1 2sin sinmv mvθ θ=  (12) 

Substituting (11) into (12), we find 

  
1 2

1 2 1 2

2 1 1

sin
1

sin
v U U
v T

θ
θ

ª º−
= = +« »

¬ ¼
 (13) 
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This problem is the mechanical analog of the refraction of light upon passing from a medium of 
a certain optical density into a medium with a different optical density. 

7-9.  

  

O x

y

M

m
φ

α

ξ

 
Using the generalized coordinates given in the figure, the Cartesian coordinates for the disk are 
(ξ cos α, –ξ sin α), and for the bob they are (A sin φ + ξ cos α, –A cos φ – ξ sin α). The kinetic 
energy is given by 

  ( )2 2 2 2
disk bob bob bob

1 1 1
2 2 2

T M I m x yξ θª º= + = + + +« »¬ ¼
� � � �T T  (1) 

Substituting the coordinates for the bob, we obtain 

  ( ) (2 2 2 21 1 1
cos

2 2 2
m I m mξ θ φ φξ φ= + + + + +� � � �A A )a�T M  (2) 

The potential energy is given by 

  ( )disk bob disk bob sin cosU U Mgy mgy M m g mgU ξ α= + = − + − A φ= +  (3) 

Now let us use the relation ξ = Rθ to reduce the degrees of freedom to two, and in addition 
substitute 2 2I MR=  for the disk. The Lagrangian becomes 

( ) ( )2 2 23 1 1
cos sin cos

4 2 2
L T U M m m m a M m g mgξ φ φξ φ ξ α§ ·= − = + + + + + + +¨ ¸© ¹

� �� �A A A φ  (4) 

The resulting equations of motion for our two generalized coordinates are 

  ( ) ( ) ( )23
sin cos sin 0

2
M m M m g mξ α φ φ α φ φª+ − + + + − + =¬

�� �� �A α º¼
§ ·
¨ ¸© ¹

 (5) 

   ( )1
cos sin 0

g
φ ξ φ α φ+ + + =��

A A
��  (6) 

7-10.  

  MM

MM

y x

x

–yS
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  2: s
d

m mg
dt

inθ θ θª º = −¬ ¼
�A A  

This reduces to 

  

( )2 cos 0

2
sin 0

k
b g

m

g

θ θ

θ θ θ

− + − − =

+ + =

�� �A A A

�� � �A
A A

 

7-16.  

  

θ

m

b

x = a sin ωt

 
For mass m: 

  

sin sin

cos

cos cos

sin

x a t b

y b

x a t b

y b

ω θ

θ

ω ω θ

θ θ

θ

= +

= −

= +

=

��

��

 

Substitute into 

  ( )2 21
2

T m x y= +� �  

  U mgy=  

and the result is 

 ( )2 2 2 2 21
cos 2 cos cos cos

2
L T U m a t ab t b mgbω ω ωθ ω θ θ= − = + + +� � θ  

Lagrange’s equation for θ gives 

  ( co
d )2s cos cos sin sinmab t mb mabw t mgb
dt

ω ω θ θ θ ω θ+ = − −� � θ  

 2 2sin cos cos sin cos sin sinab t ab t b ab t gbω ω θ ωθ ω θ θ ωθ ω θ− − + = − −� �� � θ  

or 

  2sin sin cos 0
g a

t
b b

θ θ ω ω θ+ −�� =  
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  2: s
d

m mg
dt

inθ θ θª º = −¬ ¼
�A A  

This reduces to 

  

( )2 cos 0

2
sin 0

k
b g

m

g

θ θ

θ θ θ

− + − − =

+ + =

�� �A A A

�� � �A
A A

 

7-16.  

  

θ

m

b

x = a sin ωt

 
For mass m: 

  

sin sin

cos

cos cos

sin

x a t b

y b

x a t b

y b

ω θ

θ

ω ω θ

θ θ

θ

= +

= −

= +

=

��

��

 

Substitute into 

  ( )2 21
2

T m x y= +� �  

  U mgy=  

and the result is 

 ( )2 2 2 2 21
cos 2 cos cos cos

2
L T U m a t ab t b mgbω ω ωθ ω θ θ= − = + + +� � θ  

Lagrange’s equation for θ gives 

  ( co
d )2s cos cos sin sinmab t mb mabw t mgb
dt

ω ω θ θ θ ω θ+ = − −� � θ  

 2 2sin cos cos sin cos sin sinab t ab t b ab t gbω ω θ ωθ ω θ θ ωθ ω θ− − + = − −� �� � θ  

or 

  2sin sin cos 0
g a

t
b b

θ θ ω ω θ+ −�� =  
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7-17.  

  

θ

θ

A

B

C

y

h
mg

q

 
Using q and θ (= ω t since θ (0) = 0), the x,y coordinates of the particle are expressed as 

  
( )

( )

cos sin cos sin

sin cos sin cos

x h q h t q t t

y h q h t q t t

θ θ ω ω

θ θ ω ω

= + = + º
»
»= − = − ¼

 (1) 

from which 

  
sin cos sin

cos sin cos

x h t q t q t

y h t q t q t

ω ω ω ω ω

ω ω ω ω ω

= − + + º
»
»= + − ¼

� �

� �
 (2) 

Therefore, the kinetic energy of the particle is 

  

( )

( )

2 2

2 2 2 2 2

1
2

1
2

T m x y

m h q q mh qω ω

= +

= + + −

� �

� ω �  (3) 

The potential energy is 

  ( )sin cosU mgy mg h t q tω ω= = −  (4) 

Then, the Lagrangian for the particle is 

  2 2 2 2 21 1 1
sin cos

2 2 2
mh mq mq mgh t mgq t mh qL ω ω ω ω+ − + −� �ω

t

= +  (5) 

Lagrange’s equation for the coordinate is 

  2 cosq q gω ω− =��  (6) 

The complementary solution and the particular solution for (6) are written as 

  

( ) ( )

( ) 2

cos

cos
2

c

P

q t A i t

g
q t t

ω δ

ω
ω

= + º
»
»

= − »
¼

 (7) 

so that the general solution is 

  ( ) ( ) 2cos cos
2

g
q t A i t tω δ

ω
= + − ω  (8) 

Using the initial conditions, we have 
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( )

( )

20 cos 0
2

0 sin 0

g
q A

q i A

δ
ω

ω δ

º= − = »
»
»= − = ¼�

 (9) 

Therefore, 

  δ = 0, 22
g

A
ω

=  (10) 

and 

  ( ) (2 cos cos
2

g
q t i t t)ω ω

ω
= −  (11) 

or, 

  ( ) ( )2 cosh cos
2

g
q t t tω ω

ω
= −  (12) 

  

q(t)

t

g
2 2ω

 
In order to compute the Hamiltonian, we first find the canonical momentum of q. This is 
obtained by 

  
L

p mq m h
q

ω
∂

= = −
∂�

 (13) 

Therefore, the Hamiltonian becomes 

 
2 2 2 2 2 21 1 1

sin cos
2 2 2

H pq L

mq m hq m h m q mq mgh t mgq t m qhω ω ω ω ω

= −

= − − − − + − +

�

� � � ω �
 

so that 

  2 2 2 2 21 1 1
sin cos

2 2 2
H mq m h m q mgh t mgq tω ω ω− + −� ω= −  (14) 

Solving (13) for  and substituting gives q�

  
2

2 21
sin cos

2 2
p

H hp m q mgh t mgq t
m

ω ω ω− + − ω= +  (15) 

The Hamiltonian is therefore different from the total energy, T + U. The energy is not conserved 
in this problem since the Hamiltonian contains time explicitly. (The particle gains energy from 
the gravitational field.) 
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( )

( )

20 cos 0
2

0 sin 0

g
q A

q i A

δ
ω

ω δ

º= − = »
»
»= − = ¼�

 (9) 

Therefore, 

  δ = 0, 22
g

A
ω

=  (10) 

and 

  ( ) (2 cos cos
2

g
q t i t t)ω ω

ω
= −  (11) 

or, 

  ( ) ( )2 cosh cos
2

g
q t t tω ω

ω
= −  (12) 

  

q(t)

t

g
2 2ω

 
In order to compute the Hamiltonian, we first find the canonical momentum of q. This is 
obtained by 

  
L

p mq m h
q

ω
∂

= = −
∂�

 (13) 

Therefore, the Hamiltonian becomes 

 
2 2 2 2 2 21 1 1

sin cos
2 2 2

H pq L

mq m hq m h m q mq mgh t mgq t m qhω ω ω ω ω

= −

= − − − − + − +

�

� � � ω �
 

so that 

  2 2 2 2 21 1 1
sin cos

2 2 2
H mq m h m q mgh t mgq tω ω ω− + −� ω= −  (14) 

Solving (13) for  and substituting gives q�

  
2

2 21
sin cos

2 2
p

H hp m q mgh t mgq t
m

ω ω ω− + − ω= +  (15) 

The Hamiltonian is therefore different from the total energy, T + U. The energy is not conserved 
in this problem since the Hamiltonian contains time explicitly. (The particle gains energy from 
the gravitational field.) 
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( )

( )

20 cos 0
2

0 sin 0

g
q A

q i A

δ
ω

ω δ

º= − = »
»
»= − = ¼�

 (9) 

Therefore, 

  δ = 0, 22
g

A
ω

=  (10) 

and 

  ( ) (2 cos cos
2

g
q t i t t)ω ω

ω
= −  (11) 

or, 

  ( ) ( )2 cosh cos
2

g
q t t tω ω

ω
= −  (12) 

  

q(t)

t

g
2 2ω

 
In order to compute the Hamiltonian, we first find the canonical momentum of q. This is 
obtained by 

  
L

p mq m h
q

ω
∂

= = −
∂�

 (13) 

Therefore, the Hamiltonian becomes 

 
2 2 2 2 2 21 1 1

sin cos
2 2 2

H pq L

mq m hq m h m q mq mgh t mgq t m qhω ω ω ω ω

= −

= − − − − + − +

�

� � � ω �
 

so that 

  2 2 2 2 21 1 1
sin cos

2 2 2
H mq m h m q mgh t mgq tω ω ω− + −� ω= −  (14) 

Solving (13) for  and substituting gives q�

  
2

2 21
sin cos

2 2
p

H hp m q mgh t mgq t
m

ω ω ω− + − ω= +  (15) 

The Hamiltonian is therefore different from the total energy, T + U. The energy is not conserved 
in this problem since the Hamiltonian contains time explicitly. (The particle gains energy from 
the gravitational field.) 
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( )

( )

20 cos 0
2

0 sin 0

g
q A

q i A

δ
ω

ω δ

º= − = »
»
»= − = ¼�

 (9) 

Therefore, 

  δ = 0, 22
g

A
ω

=  (10) 

and 

  ( ) (2 cos cos
2

g
q t i t t)ω ω

ω
= −  (11) 

or, 

  ( ) ( )2 cosh cos
2

g
q t t tω ω

ω
= −  (12) 

  

q(t)

t

g
2 2ω

 
In order to compute the Hamiltonian, we first find the canonical momentum of q. This is 
obtained by 

  
L

p mq m h
q

ω
∂

= = −
∂�

 (13) 

Therefore, the Hamiltonian becomes 

 
2 2 2 2 2 21 1 1

sin cos
2 2 2

H pq L

mq m hq m h m q mq mgh t mgq t m qhω ω ω ω ω

= −

= − − − − + − +

�

� � � ω �
 

so that 

  2 2 2 2 21 1 1
sin cos

2 2 2
H mq m h m q mgh t mgq tω ω ω− + −� ω= −  (14) 

Solving (13) for  and substituting gives q�

  
2

2 21
sin cos

2 2
p

H hp m q mgh t mgq t
m

ω ω ω− + − ω= +  (15) 

The Hamiltonian is therefore different from the total energy, T + U. The energy is not conserved 
in this problem since the Hamiltonian contains time explicitly. (The particle gains energy from 
the gravitational field.) 
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for small θ. The Lagrange equation for θ gives 

  0
g

θ θ+ =��
A

 (8) 

where 

  
g

ω =
A

 (9) 

which is the frequency of small rotational oscillations about the vertical through the center of 
the hoop and is the same as that for a simple pendulum of length A. 

7-21.  

  

ω

θ

 
From the figure, we can easily write down the Lagrangian for this system. 

  ( )
2

2 2 2sin
2

mR
T θ ω= +� θ  (1) 

  cosU mgR θ= −  (2) 

The resulting equation of motion for θ is 

  2 sin cos sin 0
g
R

θ ω θ θ θ− +�� =  (3) 

The equilibrium positions are found by finding the values of θ for which 

  
0

2
00 cos

g
Rθ θ 0sinθ ω θ

=

§ ·= = −¨ ¸© ¹
�� θ  (4) 

Note first that 0 and π are equilibrium, and a third is defined by the condition 

  0 2cos
g
R

θ
ω

=  (5) 

To investigate the stability of each of these, expand using 0ε θ θ= −  

  (2
0 0 02cos sin sin cos

g
R

)0ε ω θ ε θ θ ε
ω

§ ·− +¨ ¸© ¹
θ= −��  (6) 
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For 0θ π= , we have 

  2
21
g
R

ε ω
ω

§= +
©̈

�� ε·
¹̧

 (7) 

indicating that it is unstable. For 0 0θ = , we have 

  2
21
g
R

ε ω
ω

§ ·= −
©̈

�� ε  (8) 
¹̧

which is stable if 2 g Rω <  and unstable if 2 g Rω > . When stable, the frequency of small 

oscillations is 2 g Rω − . For the final candidate, 

  2 2
0sinε ω θ= −�� ε  (9) 

with a frequency of oscillations of ( )22 g Rω ω− , when it exists. Defining a critical frequency 
2
c g Rω ≡ , we have a stable equilibrium at 0 0θ =  when cω ω< , and a stable equilibrium at 

( )1 2 2
0 cos cθ ω ω−=  when cω ω≥ . The frequencies of small oscillations are then ( )2

1 cω ω ω−  

and ( )4
1 cω ω ω− , respectively. 

To construct the phase diagram, we need the Hamiltonian 

  
L

H Lθ
θ
∂

≡ −
∂
�
�  (10) 

which is not the total energy in this case. A convenient parameter that describes the trajectory 
for a particular value of H is 

  
2 2

2
2 2

1
sin cos

2c c c

H
m R

θ ω
K θ θ

ω ω ω

ª º§ · § ·
« − » −¨ ¸ ¨ ¸© ¹ © ¹« »¬ ¼

�
≡ =  (11) 

so that we’ll end up plotting 

  ( )
2 2

22 cos sin
c c

K
θ ω

θ θ
ω ω
§ · § ·

= + +¨ ¸ ¨ ¸© ¹ © ¹

�
 (12) 

for a particular value of ω and for various values of K. The results for cω ω<  are shown in 
figure (b), and those for cω ω>  are shown in figure (c). Note how the origin turns from an 
attractor into a separatrix as ω increases through cω . As such, the system could exhibit chaotic 
behavior in the presence of damping. 
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For 0θ π= , we have 

  2
21
g
R

ε ω
ω

§= +
©̈

�� ε·
¹̧

 (7) 

indicating that it is unstable. For 0 0θ = , we have 

  2
21
g
R

ε ω
ω

§ ·= −
©̈

�� ε  (8) 
¹̧

which is stable if 2 g Rω <  and unstable if 2 g Rω > . When stable, the frequency of small 

oscillations is 2 g Rω − . For the final candidate, 

  2 2
0sinε ω θ= −�� ε  (9) 

with a frequency of oscillations of ( )22 g Rω ω− , when it exists. Defining a critical frequency 
2
c g Rω ≡ , we have a stable equilibrium at 0 0θ =  when cω ω< , and a stable equilibrium at 

( )1 2 2
0 cos cθ ω ω−=  when cω ω≥ . The frequencies of small oscillations are then ( )2

1 cω ω ω−  

and ( )4
1 cω ω ω− , respectively. 

To construct the phase diagram, we need the Hamiltonian 

  
L

H Lθ
θ
∂

≡ −
∂
�
�  (10) 

which is not the total energy in this case. A convenient parameter that describes the trajectory 
for a particular value of H is 

  
2 2

2
2 2

1
sin cos
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7-22. The potential energy U which gives the force 

  ( ) ( )
2, tk

F x t e
x

τ−=  (1) 

must satisfy the relation 

  
U

F
x

∂
= −

∂
 (2) 

we find 

  tk
U e

x
τ−=  (3) 

 


