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If we take angles 6 and ¢ as our generalized coordinates, the kinetic energy and the potential
energy of the system are

1 2 1.,
T:Em[(R—p)H] 514 (V)
u :[R—(R—p)cos 9]mg )

where m is the mass of the sphere and where U = 0 at the lowest position of the sphere. I is the
moment of inertia of sphere with respect to any diameter. Since I = (2/5) mp*, the Lagrangian
becomes
L=T-U :%m(R—p)2 lia +%mp2q¥z —[R—(R—p)cos H]mg (3)
When the sphere is at its lowest position, the points A and B coincide. The condition A0 = B0
gives the equation of constraint:
F(6.9)=(R-p)6-pp=0 @)

Therefore, we have two Lagrange’s equations with one undetermined multiplier:

o afa] T,

00 dt|oo] o0
(©)
oL_djo)
o¢ dt|o¢ ¢
After substituting (3) and 6f /600=R-p and of /d¢=—p into (5), we find
—(R—p)mgsinG—m(R—p)zé+/1(R7p)=0 (6)
2 .
—5 M ¢—2p=0 )
From (7) we find A:
2 .
A= 5 mpg ®)
or, if we use (4), we have
Az—%m(K—p)é 9)
Substituting (9) into (6), we find the equation of motion with respect to 6:
O=-w’sin 0 (10)

where wis the frequency of small oscillations, defined by

_ |58
o= J7R-7) 1)

7-8.

Let us choose the x,y coordinates so that the two regions are divided by the y axis:
u, x<0
u, x>0
If we consider the potential energy as a function of x as above, the Lagrangian of the particle is
L:%nz()’cz+yz)—ll(x) (1)
Therefore, Lagrange’s equations for the coordinates x and y are

i 24 g @)
dx

mij=0 3)

Using the relation

it~ &y AP _ P, dx P dp,
Tdt T dt odx dt

4

m dx

(2) becomes
P, dP, N du(x)
m dx dx

=0 (5)

Integrating (5) from any point in the region 1 to any point in the region 2, we find

2 2
P, dp, U (x)
2 B gyt dx=0 6
-1[ m dx * Jll dx * ©
PZ P2
BN LU, =0 7
2m  2m : ! @
or, equivalently,
1 . 1 .
mef+u1:5mx§+uz ®)
Now, from (3) we have
d
—my=0
a"
and my is constant. Therefore,
miy, = miy, )
From (9) we have
1 ., 1 .
Emyf :Emﬁ (10)
Adding (8) and (10), we have
1, 1,
5 "o +L11:Emz;2+u2 (11)
From (9) we also have
muv, sin 6, = mv, sin 6, (12)

Substituting (11) into (12), we find

. 172
slmtS'1 _0 _ 1+U1—UZ a3)
sing, v, T,

This problem is the mechanical analog of the refraction of light upon passing from a medium of
a certain optical density into a medium with a different optical density.

7-16.

\—> ¥=asinot

For mass m:

X =asin ot +bsin 6

y=-bcos@

% = aw cos ot + b cos 6

7 =b@sin @
Substitute into

T= % m(i*+37)
U =mgy
and the result is
L=T-U= % m(azmz cos® wt + 2abd cos wt cos O+ b292)+ mgb cos 6
Lagrange’s equation for 0 gives
%(mabw cos ot cos O+ mbzé) = —mabwé cos wt sin —mgbh sin &

—abo® sin ot cos @ - abod cos wt sin 6+ b*0 = — abod cos wt sin 0 — gb sin O

or

[9'+§s'm B—%mz sin ot cos =0




7-17.

Using g and 0 (= @t since #(0) = 0), the x,y coordinates of the particle are expressed as

x=hcos 6+ ¢sin 6= hcos wt +q(t)sin wt
(1)
y=hsin 0— g cos 6 =hsin wt —q(t)cos wt
from which
& =—hw sin wt + qo cos ot + § sin wt
2
= hw cos wt + qo sin ot — § cos ot
Therefore, the kinetic energy of the particle is
1
T=—=m(# + i
5 M+ i)
1 2 2 2 2 -2 -
:Em(hw +q°0" +§7) - mhoq 3)
The potential energy is
U = mgy = mg (h sin ot — g cos ot @)
Then, the Lagrangian for the particle is
L= % mh’e® + % mg'w* + % mé” — mgh sin ot + mgq cos ot — mhaq 5)
Lagrange’s equation for the coordinate is
j—w’q=gcos ot 6)
The complementary solution and the particular solution for (6) are written as
q.(t) = A cos (iat + )
7)
qp ()= _ZL(:)Z cos ot
so that the general solution is
q(t):Acos(iwt+§)—chos ot 8)
2w
Using the initial conditions, we have
q(O):Acosé‘—Lz:O
20 ©9)
§(0) =—iwAsin §=0
Therefore,
. 8
6=0, A= 10
20° 9
and
q(t):i(cos iot - cos wt) (11)
20°
or,
q(t)= 2‘:)2 (cosh ot - cos wt) (12)
t
In order to compute the Hamiltonian, we first find the canonical momentum of g. This is
obtained by
oL
=——=mq-moh 13
p=gg=mame (13)

Therefore, the Hamiltonian becomes

H=pg-L

=mg* — mohj- % me*h* —% mew’q* - % mg* + mgh sin ot — mgq cos wt + mogh

so that

H= %mlf - % mw*h? —% me*q* + mgh sin ot — mgq cos ot (14)

Solving (13) for 4 and substituting gives

2
H:%+ a)hp—%mwzq2 + mgh sin wt — mgq cos wt (15)
m

The Hamiltonian is therefore different from the total energy, T + U. The energy is not conserved
in this problem since the Hamiltonian contains time explicitly. (The particle gains energy from
the gravitational field.)

7-21.

From the figure, we can easily write down the Lagrangian for this system.
mR*
T= &+ sin® 0 1
2 ( o° sin ) 1)

U =-mgR cos 6 2)

The resulting equation of motion for @ is
0-0* sianosHJr%sinH:O 3)
The equilibrium positions are found by finding the values of @ for which
iy —| w? cos 0, — & |si
0=0 \Hu = ((o cos 6, R] sin 6, (4)

Note first that 0 and 7 are equilibrium, and a third is defined by the condition

g
0, =—5— 5
cosbh="5x ()
To investigate the stability of each of these, expand using &= 6-6,
i=0® (cos 6, - § —&sin HD] (sin 6, + £cos 6,) ©6)
o°R
For , =7, we have
. g
i=’ (14— wzﬂ)g 7)
indicating that it is unstable. For 6, =0, we have
b= 1- 8 ] . 8
= [ o'R)” ®
which is stable if ® < g¢/R and unstable if »” > g/R. When stable, the frequency of small
oscillations is y/@” — g/R . For the final candidate,
i=-0"sin’ O ¢ 9)

with a frequency of oscillations of y/@* — ( g/a)R)2 , when it exists. Defining a critical frequency

®? =g/R, we have a stable equilibrium at §, =0 when @< @, , and a stable equilibrium at

6, =cos™ (a)f / wz) when @ > o, . The frequencies of small oscillations are then 4/1- (w[ / w)z

and a)«’l—(w(/w)4 , respectively.

To construct the phase diagram, we need the Hamiltonian

H=0L_| (10)
00
which is not the total energy in this case. A convenient parameter that describes the trajectory
for a particular value of H is

H _1l( o) (o)
EW:E{LQ—J —Lwﬁj sin’ @ |~ cos @ (11)
so that we'll end up plotting
N2 2
(ﬁj =2(K+cos 9)+[ﬁj sin? (12)
w( m(

for a particular value of @ and for various values of K. The results for @ < @, are shown in
figure (b), and those for @ > @, are shown in figure (c). Note how the origin turns from an
attractor into a separatrix as @ increases through @, . As such, the system could exhibit chaotic
behavior in the presence of damping.
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