1.

a) this path has $T=0$ always, so $\int T+1=0$
$\int \begin{aligned} & \text { anis path has } T=0 \text { always, so } \\ & 5 \text { ThaIs minimum, because } T \geqslant 0 .\end{aligned}$
-to t
b) It $u=m g y$, $\operatorname{sen} u=0$ ant $\int u d r=0$

$$
\begin{gathered}
\text { c) } \begin{array}{c}
y=\alpha\left(t_{0}^{2}-t^{2}\right) \\
\dot{y}=-2 \alpha t \\
T=\frac{1}{2} m y^{2}=2 m \alpha^{2} t^{2} \\
u=m g y=m g \alpha\left(t_{0}^{2}-t^{2}\right) \\
S=\int_{-t_{0}}^{46}(T-u) d t=\int_{-t}^{+t_{0}}\left(2 m \alpha^{2} t^{2}+m g \alpha t^{2}-m g \alpha t_{0}^{2}\right) d t \\
S=\left(2 m \alpha^{2}+m g \alpha\right) 2 \cdot \frac{t_{0}^{3}}{3}-2 m g \alpha t_{0}^{3} \\
\frac{d s}{d \alpha}=0=(4 m \alpha+m g)\left(\frac{2 t_{0}^{3}}{3}\right)-2 m g t_{0}^{3} \\
\frac{8}{3} \alpha+\frac{2}{3} g=2 g \\
8 \alpha=4 g \quad \alpha=g / 2
\end{array}
\end{gathered}
$$

2.41.

$$
\begin{aligned}
& z=k \rho^{2} \cdot \quad \dot{z}=2 k p \dot{\rho} \\
& u=m g z=m g k p^{2} \\
& T=\frac{1}{2} m \rho_{i}^{2}+\frac{1}{2} m \dot{z}^{2}+\frac{1}{2} m \rho^{2} \omega^{2}
\end{aligned}
$$ important! These are all 1 .

$$
\begin{aligned}
&=\frac{1}{2} m\left(\dot{\rho}^{2}+4 k^{2} \rho^{2} \dot{\rho}^{2}+\rho^{2} \omega^{2}\right) \\
& \mathcal{L}=T-u \cdot \quad \frac{\partial \mathcal{L}}{\partial \rho}=\frac{1}{2}\left(8 k^{2} \rho \dot{\rho}^{2}+2 \omega^{2} \rho\right)-2 g k \rho=\frac{d}{d b}\left(\frac{\partial 山}{\partial \dot{p}}\right) \\
&=\frac{d}{d b}\left(\frac{1}{2}\left(1+4 k^{2} \rho^{2}\right) \cdot k^{\prime} \rho\right)=\left(1+4 k^{2} \rho^{2}\right) \ddot{\rho}+8 k^{2} \rho \dot{\rho}^{2} \\
&\left(4 k^{2} \dot{\rho}^{2}+\omega^{2}\right) \rho-2 g k \rho=\left(1+4 k^{2} \rho^{2}\right) \ddot{\rho}+8 k^{2} \rho \dot{\rho}^{2}
\end{aligned}
$$

Equilibrium: $\left.\dot{\rho}=0, \ddot{\rho}=0 . \rightarrow(\omega)^{2}-2 g k\right) \rho=0$

$$
\text { so } \quad \rho=0 \text { as } \omega^{2}-2 g k=0, \rho=\text { angothic. }
$$

Solubility? For ρ small and positive, $\rho=0$, cred if $\ddot{\rho} \geqslant 0$?

$$
\left(\omega^{2}-2 g k\right) \rho=\left(1+4 k^{2} \rho^{2}\right)^{\prime \prime} \rho
$$

If this $J_{\text {is }} t$, "p will be t and qu is unstable $\omega>\sqrt{2 g i}$ Ab $\omega=\sqrt{2 j k}$, equm is "neutral". if $\dot{\rho}=0$, then $" \rho=0$.

with uniform sointch, the speed of any point is proportion cl to Its distance x^{\prime} away from ole wall

$$
v\left(x^{\prime}\right)=\frac{x^{\prime}}{L} \cdot \dot{x}
$$

So the kinetce energy of a bit of spring is

$$
d T=\frac{1}{2} p \cdot d x^{\prime} \cdot\left(v\left(x^{\prime}\right)\right)^{2}=\frac{1}{2} p \cdot d x^{\prime} \cdot \frac{x^{\prime 2}}{L^{2}} \dot{x}^{2}
$$

Toto l

$$
T=\frac{1}{2} \frac{P}{L^{2}} \dot{x}^{2} \int_{0}^{L} x^{L^{2}} d x^{\prime}=\frac{1}{2} \frac{\rho}{L^{2}} \dot{x}^{2} \frac{L^{3}}{3}=\frac{1}{6} p L \dot{x}^{2}=\frac{1}{6} M \dot{x}^{2} \text {. }
$$

b)

$$
\begin{aligned}
& \mathcal{L}=T-u=\frac{1}{2} m \dot{x}^{2}+\frac{1}{6} M \dot{x}^{2}-\frac{1}{2} k x^{2} \\
&=\frac{1}{2}\left(m+\frac{1}{3} M\right) \dot{x}^{2}-\frac{1}{2} k x^{2} . \\
& \underbrace{}_{\text {effectue mass. so }}\left(\omega=\sqrt{\frac{k}{m+\frac{M}{3}}}\right.
\end{aligned}
$$

7-3.

If we take angles θ and ϕ as our generalized coordinates, the kinetic energy and the potential energy of the system are

$$
\begin{gather*}
T=\frac{1}{2} m[(R-\rho) \dot{\theta}]^{2}+\frac{1}{2} I \dot{\phi}^{2} \tag{1}\\
U=[R-(R-\rho) \cos \theta] m g
\end{gather*}
$$

(2)
where m is the mass of the sphere and where $U=0$ at the lowest position of the sphere. I is the moment of inertia of sphere with respect to any diameter. Since $I=(2 / 5) m \rho^{2}$, the Lagrangian becomes

$$
\begin{equation*}
L=T-U=\frac{1}{2} m(R-\rho)^{2} \dot{\theta}^{2}+\frac{1}{5} m \rho^{2} \dot{\phi}^{2}-[R-(R-\rho) \cos \theta] m g \tag{3}
\end{equation*}
$$

When the sphere is at its lowest position, the points A and B coincide. The condition $A 0=B 0$ gives the equation of constraint:

$$
\begin{equation*}
f(\theta, \phi)=(R-\rho) \theta-\rho \phi=0 \tag{4}
\end{equation*}
$$

Therefore, we have two Lagrange's equations with one undetermined multiplier:

$$
\begin{align*}
& \frac{\partial L}{\partial \theta}-\frac{d}{d t}\left[\frac{\partial L}{\partial \dot{\theta}}\right]+\lambda \frac{\partial f}{\partial \theta}=0 \\
& \frac{\partial L}{\partial \phi}-\frac{d}{d t}\left[\frac{\partial L}{\partial \dot{\phi}}\right]+\lambda \frac{\partial f}{\partial \phi}=0 \tag{5}
\end{align*}
$$

From (7) we find λ :

$$
\begin{equation*}
\lambda=-\frac{2}{5} m \rho \ddot{\phi} \tag{8}
\end{equation*}
$$

or, if we use (4), we have

$$
\begin{equation*}
\lambda=-\frac{2}{5} m(R-\rho) \ddot{\theta} \tag{9}
\end{equation*}
$$

Substituting (9) into (6), we find the equation of motion with respect to θ :

$$
\begin{equation*}
\ddot{\theta}=-\omega^{2} \sin \theta \tag{10}
\end{equation*}
$$

where ω is the frequency of small oscillations, defined by

$$
\begin{equation*}
\omega=\sqrt{\frac{5 g}{7(R-\rho)}} \tag{11}
\end{equation*}
$$

7-8.

Let us choose the x, y coordinates so that the two regions are divided by the y axis:

$$
U(x)=\left[\begin{array}{ll}
U_{1} & x<0 \\
U_{2} & x>0
\end{array}\right.
$$

If we consider the potential energy as a function of x as above, the Lagrangian of the particle is

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-U(x) \tag{1}
\end{equation*}
$$

Therefore, Lagrange's equations for the coordinates x and y are

$$
\begin{gather*}
m \ddot{x}+\frac{d U(x)}{d x}=0 \tag{2}\\
m \ddot{y}=0 \tag{3}
\end{gather*}
$$

Using the relation

$$
\begin{equation*}
m \ddot{x}=\frac{d}{d t} m \dot{x}=\frac{d P_{x}}{d t}=\frac{d P_{x}}{d x} \frac{d x}{d t}=\frac{P_{x}}{m} \frac{d p_{x}}{d x} \tag{4}
\end{equation*}
$$

(2) becomes

$$
\begin{equation*}
\frac{P_{x}}{m} \frac{d P_{x}}{d x}+\frac{d U(x)}{d x}=0 \tag{5}
\end{equation*}
$$

Integrating (5) from any point in the region 1 to any point in the region 2 , we find

$$
\begin{gather*}
\int_{1}^{2} \frac{P_{x}}{m} \frac{d P_{x}}{d x} d x+\int_{1}^{2} \frac{d U(x)}{d x} d x=0 \tag{6}\\
\frac{P_{x_{2}}^{2}}{2 m}-\frac{P_{x_{1}}^{2}}{2 m}+U_{2}-U_{1}=0 \tag{7}
\end{gather*}
$$

or, equivalently,

$$
\begin{equation*}
\frac{1}{2} m \dot{x}_{1}^{2}+U_{1}=\frac{1}{2} m \dot{x}_{2}^{2}+U_{2} \tag{8}
\end{equation*}
$$

Now, from (3) we have

$$
\frac{d}{d t} m \dot{y}=0
$$

and $m \dot{y}$ is constant. Therefore,

$$
\begin{equation*}
m \dot{y}_{1}=m \dot{y}_{2} \tag{9}
\end{equation*}
$$

From (9) we have

$$
\begin{equation*}
\frac{1}{2} m \dot{y}_{1}^{2}=\frac{1}{2} m \dot{y}_{2}^{2} \tag{10}
\end{equation*}
$$

Adding (8) and (10), we have

$$
\begin{equation*}
\frac{1}{2} m v_{1}^{2}+U_{1}=\frac{1}{2} m v_{2}^{2}+U_{2} \tag{11}
\end{equation*}
$$

From (9) we also have

$$
m v_{1} \sin \theta_{1}=m v_{2} \sin \theta_{2}
$$

Substituting (11) into (12), we find

$$
\begin{equation*}
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{2}}{v_{1}}=\left[1+\frac{U_{1}-U_{2}}{T_{1}}\right]^{1 / 2} \tag{13}
\end{equation*}
$$

This problem is the mechanical analog of the refraction of light upon passing from a medium of a certain optical density into a medium with a different optical density.

7-16

For mass m :

$$
\begin{aligned}
& x=a \sin \omega t+b \sin \theta \\
& y=-b \cos \theta \\
& \dot{x}=a \omega \cos \omega t+b \dot{\theta} \cos \theta \\
& \dot{y}=b \dot{\theta} \sin \theta
\end{aligned}
$$

Substitute into

$$
\begin{gathered}
T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right) \\
U=m g y
\end{gathered}
$$

and the result is

$$
L=T-U=\frac{1}{2} m\left(a^{2} \omega^{2} \cos ^{2} \omega t+2 a b \omega \dot{\theta} \cos \omega t \cos \theta+b^{2} \dot{\theta}^{2}\right)+m g b \cos \theta
$$

Lagrange's equation for θ gives

$$
\begin{gathered}
\frac{d}{d t}\left(m a b \omega \cos \omega t \cos \theta+m b^{2} \dot{\theta}\right)=-m a b w \dot{\theta} \cos \omega t \sin \theta-m g b \sin \theta \\
-a b \omega^{2} \sin \omega t \cos \theta-a b \omega \dot{\theta} \cos \omega t \sin \theta+b^{2} \ddot{\theta}=-a b \omega \dot{\theta} \cos \omega t \sin \theta-g b \sin \theta
\end{gathered}
$$

or

$$
\ddot{\theta}+\frac{g}{b} \sin \theta-\frac{a}{b} \omega^{2} \sin \omega t \cos \theta=0
$$

7-17.

Using q and $\theta(=\omega t$ since $\theta(0)=0)$, the x, y coordinates of the particle are expressed as

$$
\left.\begin{array}{l}
x=h \cos \theta+q \sin \theta=h \cos \omega t+q(t) \sin \omega t \\
y=h \sin \theta-q \cos \theta=h \sin \omega t-q(t) \cos \omega t
\end{array}\right]
$$

from which

$$
\left.\begin{array}{l}
\dot{x}=-h \omega \sin \omega t+q \omega \cos \omega t+\dot{q} \sin \omega t \\
\dot{y}=h \omega \cos \omega t+q \omega \sin \omega t-\dot{q} \cos \omega t
\end{array}\right]
$$

Therefore, the kinetic energy of the particle is

$$
\begin{align*}
T & =\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right) \\
& =\frac{1}{2} m\left(h^{2} \omega^{2}+q^{2} \omega^{2}+\dot{q}^{2}\right)-m h \omega \dot{q} \tag{3}
\end{align*}
$$

The potential energy is

$$
U=m g y=m g(h \sin \omega t-q \cos \omega t)
$$

Then, the Lagrangian for the particle is

$$
\begin{equation*}
L=\frac{1}{2} m h^{2} \omega^{2}+\frac{1}{2} m q^{2} \omega^{2}+\frac{1}{2} m \dot{q}^{2}-m g h \sin \omega t+m g q \cos \omega t-m h \omega \dot{q} \tag{5}
\end{equation*}
$$

Lagrange's equation for the coordinate is

$$
\begin{equation*}
\ddot{q}-\omega^{2} q=g \cos \omega t \tag{6}
\end{equation*}
$$

so that the general solution is

$$
\begin{equation*}
q(t)=A \cos (i \omega t+\delta)-\frac{g}{2 \omega^{2}} \cos \omega t \tag{8}
\end{equation*}
$$

Using the initial conditions, we have

$$
\left.\begin{array}{l}
q(0)=A \cos \delta-\frac{g}{2 \omega^{2}}=0 \tag{9}\\
\dot{q}(0)=-i \omega A \sin \delta=0
\end{array}\right]
$$

Therefore,

$$
\begin{equation*}
\delta=0, \quad A=\frac{g}{2 \omega^{2}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
q(t)=\frac{g}{2 \omega^{2}}(\cos i \omega t-\cos \omega t) \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
q(t)=\frac{g}{2 \omega^{2}}(\cosh \omega t-\cos \omega t) \tag{12}
\end{equation*}
$$

In order to compute the Hamiltonian, we first find the canonical momentum of q. This is obtained by

$$
\begin{equation*}
p=\frac{\partial L}{\partial \dot{q}}=m q-m \omega h \tag{13}
\end{equation*}
$$

Therefore, the Hamiltonian becomes

$$
\begin{align*}
H & =p \dot{q}-L \\
& =m \dot{q}^{2}-m \omega h \dot{q}-\frac{1}{2} m \omega^{2} h^{2}-\frac{1}{2} m \omega^{2} q^{2}-\frac{1}{2} m \dot{q}^{2}+m g h \sin \omega t-m g q \cos \omega t+m \omega \dot{q} h \tag{12}
\end{align*}
$$

so that

$$
\begin{equation*}
H=\frac{1}{2} m \dot{q}^{2}-\frac{1}{2} m \omega^{2} h^{2}-\frac{1}{2} m \omega^{2} q^{2}+m g h \sin \omega t-m g q \cos \omega t \tag{14}
\end{equation*}
$$

Solving (13) for \dot{q} and substituting gives

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\omega h p-\frac{1}{2} m \omega^{2} q^{2}+m g h \sin \omega t-m g q \cos \omega t \tag{15}
\end{equation*}
$$

The Hamiltonian is therefore different from the total energy, $T+U$. The energy is not conserved in this problem since the Hamiltonian contains time explicitly. (The particle gains energy from the gravitational field.)

7-21.

From the figure, we can easily write down the Lagrangian for this system

$$
\begin{gather*}
T=\frac{m R^{2}}{2}\left(\dot{\theta}^{2}+\omega^{2} \sin ^{2} \theta\right) \\
U=-m g R \cos \theta \tag{2}
\end{gather*}
$$

The resulting equation of motion for θ is

$$
\begin{equation*}
\ddot{\theta}-\omega^{2} \sin \theta \cos \theta+\frac{g}{R} \sin \theta=0 \tag{3}
\end{equation*}
$$

The equilibrium positions are found by finding the values of θ for which

$$
\begin{equation*}
0=\left.\ddot{\theta}\right|_{\theta=\theta_{0}}=\left(\omega^{2} \cos \theta_{0}-\frac{g}{R}\right) \sin \theta_{0} \tag{4}
\end{equation*}
$$

Note first that 0 and π are equilibrium, and a third is defined by the condition

$$
\begin{equation*}
\cos \theta_{0}=\frac{g}{\omega^{2} R} \tag{7}
\end{equation*}
$$

To investigate the stability of each of these, expand using $\varepsilon=\theta-\theta_{0}$

$$
\begin{equation*}
\ddot{\varepsilon}=\omega^{2}\left(\cos \theta_{0}-\frac{g}{\omega^{2} R}-\varepsilon \sin \theta_{0}\right)\left(\sin \theta_{0}+\varepsilon \cos \theta_{0}\right) \tag{6}
\end{equation*}
$$

For $\theta_{0}=\pi$, we have

$$
\begin{equation*}
\ddot{\varepsilon}=\omega^{2}\left(1+\frac{g}{\omega^{2} R}\right) \varepsilon \tag{7}
\end{equation*}
$$

indicating that it is unstable. For $\theta_{0}=0$, we have

$$
\begin{equation*}
\ddot{\varepsilon}=\omega^{2}\left(1-\frac{g}{\omega^{2} R}\right) \varepsilon \tag{8}
\end{equation*}
$$

which is stable if $\omega^{2}<g / R$ and unstable if $\omega^{2}>g / R$. When stable, the frequency of small oscillations is $\sqrt{\omega^{2}-g / R}$. For the final candidate,

$$
\ddot{\varepsilon}=-\omega^{2} \sin ^{2} \theta_{0} \varepsilon
$$

with a frequency of oscillations of $\sqrt{\omega^{2}-(g / \omega R)^{2}}$, when it exists. Defining a critical frequency $\omega_{c}^{2} \equiv g / R$, we have a stable equilibrium at $\theta_{0}=0$ when $\omega<\omega_{c}$, and a stable equilibrium at $\theta_{0}=\cos ^{-1}\left(\omega_{c}^{2} / \omega^{2}\right)$ when $\omega \geq \omega_{c}$. The frequencies of small oscillations are then $\omega \sqrt{1-\left(\omega_{c} / \omega\right)^{2}}$ and $\omega \sqrt{1-\left(\omega_{c} / \omega\right)^{4}}$, respectively.
To construct the phase diagram, we need the Hamiltonian

$$
\begin{equation*}
H \equiv \dot{\theta} \frac{\partial L}{\partial \dot{\theta}}-L \tag{10}
\end{equation*}
$$

which is not the total energy in this case. A convenient parameter that describes the trajectory for a particular value of H is

$$
\begin{equation*}
K \equiv \frac{H}{m \omega_{c}^{2} R^{2}}=\frac{1}{2}\left[\left(\frac{\dot{\theta}}{\omega_{c}}\right)^{2}-\left(\frac{\omega}{\omega_{c}}\right)^{2} \sin ^{2} \theta\right]-\cos \theta \tag{11}
\end{equation*}
$$

so that we'll end up plotting

$$
\left(\frac{\dot{\theta}}{\omega_{c}}\right)^{2}=2(K+\cos \theta)+\left(\frac{\omega}{\omega_{c}}\right)^{2} \sin ^{2} \theta
$$

for a particular value of ω and for various values of K. The results for $\omega<\omega_{c}$ are shown in figure (b), and those for $\omega>\omega_{c}$ are shown in figure (c). Note how the origin turns from an attractor into a separatrix as ω increases through ω_{c}. As such, the system could exhibit chaotic behavior in the presence of damping.

(b)

(c)

