Homework 14 Solutions. There is a typo in eqn (2) in the solution to 7-34. **7-34.**

The coordinates of the wedge and the particle are

$$x_M = x$$
 $x_m = r \cos \theta + x$
 $y_M = 0$ $y_m = -r \sin \theta$ (1)

The Lagrangian is then

$$L = \frac{M+m}{2}\dot{x}^2 + \frac{m}{r}\left(\dot{r}^2 + r^2\dot{\theta}^2 + 2\dot{x}\dot{r}\cos\theta - 2\dot{x}r\dot{\theta}\sin\theta\right) + mgr\sin\theta$$
(2)

Note that we do not take *r* to be constant since we want the reaction of the wedge on the particle. The constraint equation is $f(x, \theta, r) = r - R = 0$.

a) Right now, however, we may take r = R and $\dot{r} = \ddot{r} = 0$ to get the equations of motion for x and θ . Using Lagrange's equations,

$$\ddot{x} = aR(\ddot{\theta}\sin\theta + \dot{\theta}^2\cos\theta)$$
(3)

$$\ddot{\theta} = \frac{\ddot{x}\sin\theta + g\cos\theta}{R} \tag{4}$$

where $a \equiv m/(M + m)$.

b) We can get the reaction of the wedge from the Lagrange equation for *r*

$$\lambda = m\ddot{x}\cos\theta - mR\dot{\theta}^2 - mg\sin\theta \tag{5}$$

We can use equations (3) and (4) to express \ddot{x} in terms of θ and $\dot{\theta}$, and substitute the resulting expression into (5) to obtain

$$\lambda = \left[\frac{a-1}{1-a\sin^2\theta}\right] \left(R\dot{\theta}^2 + g\sin\theta\right) \tag{6}$$

To get an expression for $\dot{\theta}$, let us use the conservation of energy

$$H = \frac{M+m}{2}\dot{x}^2 + \frac{m}{2}\left(R^2\dot{\theta}^2 - 2\dot{x}R\dot{\theta}\sin\theta\right) - mgR\sin\theta = -mgR\sin\theta_0 \tag{7}$$

where θ_0 is defined by the initial position of the particle, and $-mgR \sin \theta_0$ is the total energy of the system (assuming we start at rest). We may integrate the expression (3) to obtain $\dot{x} = aR\dot{\theta}\sin\theta$, and substitute this into the energy equation to obtain an expression for $\dot{\theta}$

$$\dot{\theta}^2 = \frac{2g(\sin\theta - \sin\theta_0)}{R(1 - a\sin^2\theta)}$$
(8)

Finally, we can solve for the reaction in terms of only θ and θ_0

$$\lambda = -\frac{mMg(3\sin\theta - a\sin^3\theta - 2\sin\theta_0)}{(M+m)(1 - a\sin^2\theta)^2}$$
(9)

7-35. We use z_i and p_i as our generalized coordinates, the subscript *i* corresponding to the *i*th particle. For a uniform field in the *z* direction the trajectories z = z(t) and momenta p = p(t) are given by

$$z_{i} = z_{i0} + v_{i0}t - \frac{1}{2}gt^{2}$$

$$p_{i} = p_{i0} - mgt$$
(1)

where z_{i0} , p_{i0} , and $v_{i0} = p_{i0}/m$ are the initial displacement, momentum, and velocity of the *i*th particle.

Using the initial conditions given, we have

$$z_1 = z_0 + \frac{p_0 t}{m} - \frac{1}{2} g t^2$$
(2a)

$$p_1 = p_0 - mgt \tag{2b}$$

$$z_2 = z_0 + \Delta z_0 + \frac{p_0 t}{m} - \frac{1}{2} g t^2$$
 (2c)

$$p_2 = p_0 - mgt \tag{2d}$$

$$z_3 = z_0 + \frac{(p_0 + \Delta p_0)t}{m} - \frac{1}{2}gt^2$$
(2e)

$$p_3 = p_0 + \Delta p_0 - mgt \tag{2f}$$

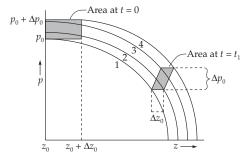
$$z_4 = z_0 + \Delta Z_0 + \frac{(p_0 + \Delta p_0)t}{m} - \frac{1}{2}gt^2$$
(2g)

$$p_4 = p_0 + \Delta p_0 - mgt \tag{2h}$$

The Hamiltonian function corresponding to the *i*th particle is

$$H_{i} = T_{i} + V_{i} = \frac{m\dot{z}_{i}^{2}}{2} + mgz_{i} = \frac{p_{i}^{2}}{2m} + mgz_{i} = \text{const.}$$
(3)

From (3) the phase space diagram for any of the four particles is a parabola as shown below.

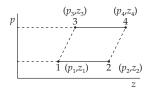


From this diagram (as well as from 2b, 2d, 2f, and 2h) it can be seen that for any time t,

$$p_1 = p_2 \tag{4}$$

$$p_3 = p_4 \tag{5}$$

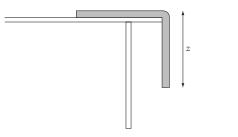
Then for a certain time *t* the shape of the area described by the representative points will be of the general form



where the base $\overline{1\ 2}$ must parallel to the top $\overline{3\ 4}$. At time t = 0 the area is given by $\Delta z_0 \Delta p_0$, since it corresponds to a rectangle of base Δz_0 and height Δp_0 . At any other time the area will be given by

$$A = \left\{ \text{base of parallelogram} \Big|_{t=t_1} = (z_2 - z_1) \Big|_{t=t_1} \right.$$
$$= \left(z_4 - z_3 \right) \Big|_{t=t_1} = \Delta z_0 \right\}$$
$$x \left\{ \text{height of parallelogram} \Big|_{t=t_1} = \left(p_3 - p_1 \right) \Big|_{t=t_1} \right.$$
$$= \left(p_4 - p_2 \right) \Big|_{t=t_1} = \Delta p_0 \right\}$$
$$= \Delta p_0 \Delta z_0$$
(6)

Thus, the area occupied in the phase plane is constant in time. **7-39.**



The Lagrangian of the rope is

$$L = T - U = \frac{1}{2}m\left(\frac{dz}{dt}\right)^{2} - \left(-\frac{mz}{b}g\frac{z}{2}\right) = \frac{1}{2}m\left(\frac{dz}{dt}\right)^{2} + \frac{mgz^{2}}{2b}$$

from which follows the equation of motion

$$\frac{\partial L}{\partial z} = \frac{d}{dt} \frac{\partial L}{\partial \dot{z}} \Longrightarrow \frac{mgz}{b} = m \frac{d^2z}{dt^2}$$

 $T = \frac{1}{2} \frac{1}{9} + \frac{1}{1} \frac{1}{1} \frac{1}{2}$ U= - Mgx $\mathcal{I} = \pm \pm \phi^2 + \pm m \dot{x}^2 + m g x$ Conditional: $x = \phi R$, $\sigma = \phi R - x = 0 = f(x_1 R)$ $mg - d(m\dot{x}) - \lambda = 0$ $\left[0 - d(I\dot{\phi}) + \lambda R = 0 \right]$ $\bigcirc Mg - m\ddot{x} - \lambda = 0 \qquad \bigcirc I\ddot{\theta} = \lambda R$ Now, from combraints $R\phi = +\dot{X}$ so $\lambda = \pm \frac{J}{2}$ Ther, $mg = m\dot{x} + \frac{T\dot{x}}{r^2} = \dot{x}\left(m + \frac{T}{r^2}\right)$ $\vec{X} = \frac{mR^2}{mR^2 + 1} g Downward acceleration$

The constraint force =
$$\lambda \frac{\partial f}{\partial x} = -\lambda = -\frac{1}{R^2} = -\frac{mI}{mR^2 + I} g$$
.
upward on mass m.
Neutonin
 $F = m\alpha = mg - T = mx' \quad cf. eq. D$
 $\frac{1}{1}$
 $V = I\alpha = T.R = I \phi \quad ol \quad eq. D$
 $\lambda \frac{\partial f}{\partial t} = T.R = constraint Torque.$
 $\chi = \frac{1}{2} \phi$

į.