
Homework	14	Solutions.		
There	is	a	typo	in	eqn	(2)	in	the	solution	to	7-34.		
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7-34.  
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The coordinates of the wedge and the particle are 
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The Lagrangian is then 
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Note that we do not take r to be constant since we want the reaction of the wedge on the 
particle. The constraint equation is ( ), , 0f x r r Rθ = − = . 

a) Right now, however, we may take r = R and 0r r= =� ��  to get the equations of motion for x 
and θ. Using Lagrange’s equations, 
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where ( )a m M m≡ + . 

b) We can get the reaction of the wedge from the Lagrange equation for r 

  2cos sinmx mR mgλ θ θ= − −��� θ  (5) 

We can use equations (3) and (4) to express  in terms of θ and x�� θ� , and substitute the resulting 
expression into (5) to obtain 
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To get an expression for θ� , let us use the conservation of energy 
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where 0θ  is defined by the initial position of the particle, and 0sinmgR θ−  is the total energy of 
the system (assuming we start at rest). We may integrate the expression (3) to obtain 

siR nx a θ θ=� � , and substitute this into the energy equation to obtain an expression for θ�  
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Finally, we can solve for the reaction in terms of only θ and 0θ  

  
( )
( )( )

3
0

22

3 sin sin 2 sin

1 sin

mMg a

M m a

θ θ θ

θ

− −
= −

+ −
λ  (9) 

7-35. We use iz  and  as our generalized coordinates, the subscript i corresponding to the 
ith particle. For a uniform field in the z direction the trajectories z = z(t) and momenta p = p(t) 
are given by 
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where 0iz , , and 0ip 0 0i iv p= m  are the initial displacement, momentum, and velocity of the ith 
particle. 

Using the initial conditions given, we have 
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  4 0 0p p p mg= + ∆ −  (2h) 

The Hamiltonian function corresponding to the ith particle is 
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From (3) the phase space diagram for any of the four particles is a parabola as shown below. 
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From this diagram (as well as from 2b, 2d, 2f, and 2h) it can be seen that for any time t, 

  1p p2=  (4) 

  3p p4=  (5) 

Then for a certain time t the shape of the area described by the representative points will be of 
the general form 
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where the base 1  must parallel to the top 2 3 4 . At time t = 0 the area is given by 0 0z p∆ ∆ , since 
it corresponds to a rectangle of base 0z∆  and height 0p∆ . At any other time the area will be 
given by 
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Thus, the area occupied in the phase plane is constant in time. 

7-36. The initial volume of phase space accessible to the beam is 

  2
0 0V R p2

0π π=  (1) 

After focusing, the volume in phase space is 
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1 1V R p1π π=  (2) 

 



	

	

	
	
	
	
	
	
	
	

HAMILTON’S PRINCIPLE—LAGRANGIAN AND HAMILTONIAN DYNAMICS 227 

  

p0 + ∆p0

z0 + ∆z0

p0

Area at t = 0

Area at t = t1

∆p0

z0

∆z0

p

z

1
2

3 4

 
From this diagram (as well as from 2b, 2d, 2f, and 2h) it can be seen that for any time t, 

  1p p2=  (4) 

  3p p4=  (5) 

Then for a certain time t the shape of the area described by the representative points will be of 
the general form 

  

p

z

1 2

3 4

(p1,z1) (p2,z2)

(p3,z3) (p4,z4)

 

where the base 1  must parallel to the top 2 3 4 . At time t = 0 the area is given by 0 0z p∆ ∆ , since 
it corresponds to a rectangle of base 0z∆  and height 0p∆ . At any other time the area will be 
given by 

  

( ){
( ) }
( ){
( ) }

1 1

1

1 1

1

2 1

4 3 0

3 1

4 2 0

0 0

base of parallelogram

height of parallelogram

=

t t t t

t t

t t t t

t t

A z z

z z z

x p p

p p p

p z

= =

=

= =

=

= = −

= − = ∆

= −

= − = ∆

∆ ∆  (6) 

Thus, the area occupied in the phase plane is constant in time. 

7-36. The initial volume of phase space accessible to the beam is 

  2
0 0V R p2

0π π=  (1) 

After focusing, the volume in phase space is 

  2 2
1 1V R p1π π=  (2) 

 

HAMILTON’S PRINCIPLE—LAGRANGIAN AND HAMILTONIAN DYNAMICS 229 

  
2

1
1 1 2 2

d x
m g m

dt
λ 0− + =  (2) 

  
2

2
2 2 2 0

d x
m g m

dt
λ− + =  (3) 

  
2

3
3 3 2 0

d x
m g m

dt
λ− + =  (4) 

Combining (1)–(4) we find 
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Finally, the string tension that acts on m  is (see Eq. (2)) 1
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7-38. The Hamiltonian of the system is 

  
2 22 4 21

2 2 4 2 2
pdx kx bx kx bx

U m
dt m

= + = + + = + +
4

4
H T  

The Hamiltonian motion equations that follow this Hamiltonian are 
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7-39. 
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The Lagrangian of the rope is 
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from which follows the equation of motion 
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7-40. 
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We choose the coordinates for the system as shown in the figure. 

The kinetic energy is 
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The potential energy is 

  U m 1 1cos ( cos cos )gb mg b bθ θ θ= − − +  

And the Lagrangian is 
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From this follow 3 equations of motion 
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