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8-19. The semimajor axis of an orbit is defined as one-half the sum of the two apsidal
distances, r,,, and r,,, [see Eq. (8.44)], so
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This is the same as the semimajor axis defined by Eq. (8.42). Therefore, by using Kepler’s Third
Law, we can find the semimajor axis of Ceres in astronomical units:
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Here, M, and m, are the masses of the sun and Ceres, respectively. Therefore, (2) becomes
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so that

The period of Jupiter can also be calculated using Kepler’s Third Law:
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Therefore,

The mass of Saturn can also be calculated from Kepler’s Third law, with the result
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8-27. By conservation of angular momentum

Substituting gives

mr,v, =mr,v,

or v =—=

v,=1608 m/s

8-35. If we write the radial distance r as

r=p+x, p = const.

then x obeys the oscillatory equation [see Egs. (8.88) and (8.89)]

where

The time required for the radius vector to go from any maximum value to the succeeding
minimum value is
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where 7, = 2 , the period of x. Thus,
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The angle through which the particle moves during this time interval is

¢= At = o (6)
2

where @ is the angular velocity of the orbital motion which we approximate by a circular
motion. Now, under the force F(r)=-ug(r), @ satisfies the equation

ppa® =—F(r)= ug(p) @)
Substituting (3) and (7) into (6), we find for the apsidal angle
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Using g(r)zkln,we have
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Therefore, (8) becomes
¢=r/l3-n (10)

In order to have the closed orbits, the apsidal angle must be a rational fraction of 27. Thus, n
must be

n=2,-1,-6,...

n = 2 corresponds to the inverse-square-force and n = —1 corresponds to the harmonic oscillator
force.



