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the force must have acted only along the line connecting the force center and the body. That is, 
the force is central. 

Kepler’s first law states that planets move in elliptical orbits with the sun at one focus. This 
means the orbit can be described by Eq. (8.41): 

  1 cos with 0
r

1
α

ε θ ε= + < <  (1) 

On the other hand, for central forces, Eq. (8.21) holds: 

  ( )
2 2

2 2

1 1d r
F r

d r r
µ

θ
+ = −

A
 (2) 

Substituting 1  from (1) into the left-hand side of (2), we find r

  ( )2
2

1
r F r

a
µ

= −
A

 (3) 

which implies, that 

  ( )
2

2F r
rαµ

= −
A

 (4) 

8-19. The semimajor axis of an orbit is defined as one-half the sum of the two apsidal 
distances,  and  [see Eq. (8.44)], so maxr minr

  [ ]max min 2

1 1
2 2 1 1

r r
1

α α α
ε ε ε

+ = + =
+ − −

 (1) 

This is the same as the semimajor axis defined by Eq. (8.42). Therefore, by using Kepler’s Third 
Law, we can find the semimajor axis of Ceres in astronomical units: 

  

2
2

2
2

4

4

C
C

C C

EE
E

E

k
a

ka

τ
π µ

τ
π µ

=  (2) 

where c sk M mcγ= , and 

  
1 1 1

c sM mµ
= +

c

 

Here, sM  and  are the masses of the sun and Ceres, respectively. Therefore, (2) becomes cm

  

1 32

C s c c

E s e E

a M m
a M m

τ
τ

+
=

+
 (3) 

from which 
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  ( )

1 3

2

1333, 480
8,000 4.6035

333, 480 1
C

E

a
a

+
=

+
 (4) 

so that 

  2.767C

E

a
a

≅  (5) 

The period of Jupiter can also be calculated using Kepler’s Third Law: 

  

1 22
3 1 23

2
3

4

4

J
J

J J Js E

EE s
E

E

a
k aM m

M m aa
k

π µ
τ

π µτ J E

+
= =

+
 (6) 

from which 

  ( )
1 2

3333, 480 1
5.2028

333, 480 318.35
J

E

τ
τ

+
=

+
 (7) 

Therefore, 

  11.862J

E

τ
τ

≅  (8) 

The mass of Saturn can also be calculated from Kepler’s Third law, with the result 

  95.3s

e

m
m

≅  (9) 

8-20. Using Eqs. (8.42) and (8.41) for a and r, we have 

  
44

2
0

1 cos1
cos cos

1
a

dt
r

τ ε θ
θ θ

τ ε
+

=
−∫  (1) 

From Kepler’s Second Law, we can find the relation between t and θ: 

  
( )

2

2
1
2 1 cos

dt dA d
ab ab
τ τ α

θ
π π ε θ

= =
+

 (2) 

since ( ) 21 2dA r dθ= . Therefore, (1) becomes 

  
( )

(
4 22

2
42

0

1 1
cos cos 1 cos

21

a a
d

r ab

πτ )θ θ ε θ
τ πε

=
−

∫ θ+  (3) 

It is easily shown that the value of the integral is 2πε. Therefore, 
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8-27. By conservation of angular momentum 

  

a a p p

p p
a

a

mr v mr v

r v
or v

r

=

=
 

Substituting gives 

  1608 m/sav =  

8-28. Use the conservation of energy for a spacecraft leaving the surface of the moon with 
just enough velocity  to reach r = ∞: escv

  i i f fT U T U+ = +  

  2 m
esc

GM1
0 0

2 m

m
mv

r
− = +  

  esc
2 m

m

GM
v

r
=  

where 

  M  22mass of the moon 7.36 10  kgm = = ×

×  r  6radius of the moon 1.74 10  mm = =

Substituting gives 

  esc 2380 m/sv =  

8-29.  max 0 min 0,v v v v v v= + = −  

From conservation of angular momentum we know 

  a a b bmv r mv r=  

or 

  max max
max min min max

min min

;
r v

v r v r
r v

= =  (1) 

Also we know 

  ( )min 1r a e= −  (2) 

  ( )max 1r a e= +  (3) 

Dividing (3) by (2) and setting the result equal to (1) gives 
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8-35. If we write the radial distance r as 

  , cor x nst.ρ ρ= + =  (1) 

then x obeys the oscillatory equation [see Eqs. (8.88) and (8.89)] 

  2
0 0x xω+ =��  (2) 

where 

  
( ) ( )0

3g
g

ρ
ω ρ

ρ
= + ′  (3) 

The time required for the radius vector to go from any maximum value to the succeeding 
minimum value is 

  0

2
t

τ
∆ =  (4) 

where 0
0

2π
τ

ω
= , the period of x. Thus, 

  
0

t
π
ω

∆ =  (5) 

The angle through which the particle moves during this time interval is 

  
0

t
πω

φ ω
ω

= ∆ =  (6) 

where ω is the angular velocity of the orbital motion which we approximate by a circular 
motion. Now, under the force ( ) ( )F r g rµ= − , ω satisfies the equation 

  ( ) ( )2 F r gµρω µ ρ= − =  (7) 

Substituting (3) and (7) into (6), we find for the apsidal angle 

  

( )

( ) ( ) ( )
( )

0 3
3

g

g g
g

g

ρ
π

ρπω π
ω

φ
ρ ρ

ρ ρ
ρ ρ

= = =
′

+ +′

 (8) 

Using ( ) 1
n

k
g r

rµ
= , we have 

  
( )
( )

g n
g

ρ
ρ ρ

′
= −  (9) 

Therefore, (8) becomes 

  3 nφ π= −  (10) 
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In order to have the closed orbits, the apsidal angle must be a rational fraction of 2π. Thus, n 
must be 

  2, 1, 6,n = − − …  

n = 2 corresponds to the inverse-square-force and n = –1 corresponds to the harmonic oscillator 
force. 

8-36. The radius of a circular orbit in a force field described by 

  ( ) 2
r ak

F r e
r

−= −  (1) 

is determined by equating F(r) to the centrifugal force: 

  
2

2
ak

e
r m

ρ
3ρ

− =  (2) 

Hence, the radius ρ of the circular orbit must satisfy the relation 

  
2

ae
mk

ρρ − =  (3) 

Since the orbit in which we are interested is almost circular, we write 

  ( ) ( )[ ]1r θ ρ δ θ= +  (4) 

where ( ) 1δ θ  for all values of θ. (With this description, the apsides correspond to the 
maximum and minimum values of δ.) 

We can express the following quantities in terms of δ by using (4): 

  (1 1
1u

r
)δ

ρ
= = −  (5a) 

  
2 2

2

1 1d d
d r d 2

δ
θ ρ θ

= −  (5b) 

  

( )

( )
(

12

22
1

1

au

a

F u ku e

k e
a

ρ

ρδ
ρ δ

−

−

= −

≅ − −
+

)  (5c) 

Then, substitution into Eq. (8.20) yields 

  ( ) (
2

2 2

1 1
1 1

ad mke )p a
d

ρδ
δ

ρ θ ρ

−

− = − δ− +  (6) 

Multiplying by ρ, using (3) and simplifying, (6) reduces to 

  ( )
2

2 1
d

a
d
δ

ρ δ
θ

0+ − =  (7) 

 


