8.18

$$
\begin{aligned}
& V_{p}=8500 \mathrm{~m} / \mathrm{s} \\
& r_{p}=R_{e}+250 \mathrm{~km}=6.65 \times 10^{6} \mathrm{~m} . \\
& l=\vec{r} \times \vec{\rho} \quad l=r_{p} U_{p}=5.6525 \times 10^{10} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times M_{\text {sat }} . \\
& \alpha=\frac{\mu^{2}}{\gamma \mu}, \gamma=G_{M S N} M_{E} \quad \text { so } \quad \alpha=\frac{3.195 \times 10^{21} \mu_{s i}^{2}}{G M_{e} M_{\text {sid }} \mu} \leftarrow \mu \approx \text { sot }^{\prime}
\end{aligned}
$$

Now $G M_{e}=g A_{e}^{2}=9.8 \mathrm{~m} / \mathrm{s} \cdot\left(6.4 \times 10^{6} \mathrm{~m}\right)^{2}=4.014 \times 10^{14}$

$$
\begin{aligned}
& \text { So } \alpha=7.96 \times 10^{6} \mathrm{~m} . \\
& r_{p}=\frac{\alpha}{1+\varepsilon} \Rightarrow \varepsilon=\frac{\alpha-r_{p}}{r_{p}}=0.197 \\
& \text { Apuger } r_{a}=\frac{\alpha}{1-\varepsilon}=9.913 \times 10^{6} \mathrm{~m} \text { Height }=3.513 \times 10^{6} \mathrm{~m} .
\end{aligned}
$$

8-9. $\xrightarrow{\Delta V_{i}, \Delta V_{f}}$
$\vec{V}_{f}=\vec{V}_{i}+\vec{V}_{f}$ thus velouty added

$$
\left|V_{f}\right|=\sqrt{2}\left|V_{i}\right| \quad \bar{T}_{f}=2 T_{i}
$$

Since initial usbits is circular with $T_{i}=\frac{1}{2}|u|$, after thrust $T_{f}=|u|$ so $T_{f}+u=E_{f}=0$. Parabolic obit.
Angular momentum is unchanged, singe thrust provides no torque
b) E is conserved, so $E(r)=0$.

$$
\begin{aligned}
& U(r)=\frac{-G M_{e} M_{s}}{r} \quad \text { and } T(r)=\frac{+G M_{e} M_{s}}{r} \\
& V(r)=U(r)+\frac{l^{2}}{2 \mu r^{2}} \quad l=\mu r_{0} V \quad \text { so } V(r)=\frac{-G M_{m}}{r}+\frac{m r_{0} V}{2 r^{2}}
\end{aligned}
$$

Since $E=0$, motion is parabolic.
Can you find the perihelion of ole parabola? (The satellite doen't got there, since it is before she thrusters fired)

8-14. $r=k \theta^{2}$. Since $\frac{d^{2}}{d \theta^{2}}\left(\frac{1}{r}\right)+\frac{1}{r}=\frac{-\mu r^{2}}{e^{2}} F(r)$, we
have $\frac{d}{d \theta}\left(\frac{1}{k \theta^{2}}\right)=-\frac{2}{k} \frac{1}{\theta^{3}} \quad \frac{d^{2}}{d \sigma^{2}}\left(\frac{1}{k \theta^{2}}\right)=\frac{6}{k} \frac{1}{\theta^{4}}=\frac{6 k}{r^{2}}$
so $\frac{6 k}{r^{2}}+\frac{1}{r}=-\frac{\mu r^{2}}{\mu^{2}} F(r) \quad F(r)=-\frac{e^{2}}{\mu}\left[\frac{6 k}{r^{4}}+\frac{1}{r^{3}}\right]$,
Note that the fore depends or l,
so not all orbits are spirals $r=k G^{2}$.

8-19. The semimajor axis of an orbit is defined as one-half the sum of the two apsidal distances, $r_{\text {max }}$ and $r_{\text {min }}$ [see Eq. (8.44)], so

$$
\begin{equation*}
\frac{1}{2}\left[r_{\max }+r_{\min }\right]=\frac{1}{2}\left[\frac{\alpha}{1+\varepsilon}+\frac{\alpha}{1-\varepsilon}\right]=\frac{\alpha}{1-\varepsilon^{2}} \tag{1}
\end{equation*}
$$

This is the same as the semimajor axis defined by Eq. (8.42). Therefore, by using Kepler's Third Law, we can find the semimajor axis of Ceres in astronomical units:

$$
\begin{equation*}
\frac{a_{C}}{a_{E}}=\left[\frac{\frac{k_{C}}{4 \pi^{2} \mu_{C}} \tau_{C}^{2}}{\frac{k_{E}}{4 \pi^{2} \mu_{E}} \tau_{E}^{2}}\right] \tag{2}
\end{equation*}
$$

where $k_{c}=\gamma M_{s} m_{c}$, and

$$
\frac{1}{\mu_{c}}=\frac{1}{M_{s}}+\frac{1}{m_{c}}
$$

Here, M_{s} and m_{c} are the masses of the sun and Ceres, respectively. Therefore, (2) becomes

$$
\begin{equation*}
\frac{a_{C}}{a_{E}}=\left[\frac{M_{s}+m_{c}}{M_{s}+m_{e}}\left[\frac{\tau_{c}}{\tau_{E}}\right]^{2}\right]^{1 / 3} \tag{3}
\end{equation*}
$$

from which

$$
\begin{equation*}
\frac{a_{C}}{a_{E}}=\left[\frac{333,480+\frac{1}{8,000}}{333,480+1}(4.6035)^{2}\right]^{1 / 3} \tag{4}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{a_{C}}{a_{E}} \cong 2.767 \tag{5}
\end{equation*}
$$

The period of Jupiter can also be calculated using Kepler's Third Law:

$$
\begin{equation*}
\frac{\tau_{J}}{\tau_{E}}=\left[\frac{\frac{4 \pi^{2} \mu_{J}}{k_{J}} a_{J}^{3}}{\frac{4 \pi^{2} \mu_{E}}{k_{E}} a_{E}^{3}}\right]^{1 / 2}=\left[\frac{M_{s}+m_{E}}{M_{s}+m_{J}}\left[\frac{a_{J}}{a_{E}}\right]^{3}\right]^{1 / 2} \tag{6}
\end{equation*}
$$

from which

$$
\begin{equation*}
\frac{\tau_{J}}{\tau_{E}}=\left[\frac{333,480+1}{333,480+318.35}(5.2028)^{3}\right]^{1 / 2} \tag{7}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\frac{\tau_{J}}{\tau_{E}} \cong 11.862 \tag{8}
\end{equation*}
$$

The mass of Saturn can also be calculated from Kepler's Third law, with the result

$$
\begin{equation*}
\frac{m_{s}}{m_{e}} \cong 95.3 \tag{9}
\end{equation*}
$$

8-27. By conservation of angular momentum

$$
\begin{aligned}
m r_{a} v_{a} & =m r_{p} v_{p} \\
\text { or } \quad v_{a} & =\frac{r_{p} v_{p}}{r_{a}}
\end{aligned}
$$

Substituting gives

$$
v_{a}=1608 \mathrm{~m} / \mathrm{s}
$$

8-35. If we write the radial distance r as

$$
\begin{equation*}
r=\rho+x, \quad \rho=\text { const. } \tag{1}
\end{equation*}
$$

then x obeys the oscillatory equation [see Eqs. (8.88) and (8.89)]

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{0}=\sqrt{\frac{3 g(\rho)}{\rho}+g^{\prime}(\rho)} \tag{3}
\end{equation*}
$$

The time required for the radius vector to go from any maximum value to the succeeding minimum value is

$$
\begin{equation*}
\Delta t=\frac{\tau_{0}}{2} \tag{4}
\end{equation*}
$$

where $\tau_{0}=\frac{2 \pi}{\omega_{0}}$, the period of x. Thus,

$$
\begin{equation*}
\Delta t=\frac{\pi}{\omega_{n}} \tag{5}
\end{equation*}
$$

The angle through which the particle moves during this time interval is

$$
\begin{equation*}
\phi=\omega \Delta t=\frac{\pi \omega}{\omega_{0}} \tag{6}
\end{equation*}
$$

where ω is the angular velocity of the orbital motion which we approximate by a circular motion. Now, under the force $F(r)=-\mu g(r), \omega$ satisfies the equation

$$
\begin{equation*}
\mu \rho \omega^{2}=-F(r)=\mu g(\rho) \tag{7}
\end{equation*}
$$

Substituting (3) and (7) into (6), we find for the apsidal angle

$$
\begin{equation*}
\phi=\frac{\pi \omega}{\omega_{0}}=\frac{\pi \sqrt{\frac{g(\rho)}{\rho}}}{\sqrt{\frac{3 g(\rho)}{\rho}+g^{\prime}(\rho)}}=\frac{\pi}{\sqrt{3+\rho \frac{g^{\prime}(\rho)}{g(\rho)}}} \tag{8}
\end{equation*}
$$

Using $g(r)=\frac{k}{\mu} \frac{1}{r^{n}}$, we have

$$
\begin{equation*}
\frac{g^{\prime}(\rho)}{g(\rho)}=-\frac{n}{\rho} \tag{9}
\end{equation*}
$$

Therefore, (8) becomes

$$
\begin{equation*}
\phi=\pi / \sqrt{3-n} \tag{10}
\end{equation*}
$$

In order to have the closed orbits, the apsidal angle must be a rational fraction of 2π. Thus, n must be

$$
n=2,-1,-6, \ldots
$$

$n=2$ corresponds to the inverse-square-force and $n=-1$ corresponds to the harmonic oscillator force.

