Lagrange equations with undetermined multiplier

$$L = T - U$$

$$\frac{\partial L}{\partial q_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} + \lambda \frac{\partial f}{\partial q_i} = 0 \quad \text{where the constraint is} \quad f(q_i) = 0$$

1. A mass m hangs by a string, the other end of which is wrapped around a frictionless wheel with radius R and moment of inertia I. Write down the Lagrangian in terms of x, the distance the mass has fallen, and ϕ , the angle the wheel has rotated.

$$\int_{X} z = T - U$$

$$z \leq m \dot{x}^{2} + \left(\frac{1}{2} \dot{\phi}^{2} + m \dot{\phi}^{2} \right)$$

2. Write down the equation that represents the constraint that the string not stretch.

$$x = R\phi$$
 or $f(x, \phi) = x - R\phi = 0$

3. Write down the Lagrange equations with an undetermined multiplier, so as to be able to find the (generalized) constraint forces.

$$\frac{\partial L}{\partial x} - \frac{d}{db} \frac{\partial L}{\partial \dot{x}} + \dot{\lambda} = 0$$

$$mg - m\ddot{x} + \lambda = 0$$

OVER

$$\frac{\partial L}{\partial x} - \frac{d}{dx} \frac{\partial L}{\partial x} + \lambda = 0 \qquad \text{mg} - \text{mix} + \lambda = 0 \qquad 0$$

$$\frac{\partial L}{\partial x} - \frac{d}{dx} \frac{\partial L}{\partial x} + \lambda = 0 \qquad 0 - \text{Tip} - \lambda R = 0 \qquad 0$$

4. Find the generalized constraint force \boldsymbol{F}_{φ} What is this force, physically?

From ②
$$\lambda = -\frac{1}{\rho}$$

Insert in
$$0$$
 4 \overrightarrow{M} $mg - m \overset{\circ}{X} - \frac{I \overset{\circ}{G}}{R} = 0$

use constraint
$$\ddot{X} = R\dot{\phi}$$

$$mg - m\ddot{x} - \frac{T\ddot{x}}{\rho i} = 0$$

$$\ddot{x} = \frac{mg}{m + I/\rho^2}.$$

$$F_{\mu} = -\lambda R = \mu \overline{I} = \frac{I \ddot{\nu}}{R^{2}} = \frac{mgI}{mR + I/R}.$$