Useful Equations

$$\mathbf{v} = \dot{\mathbf{r}} = \dot{r}\mathbf{e}_r + r\dot{\theta}\mathbf{e}_{\theta}$$

$$\mathbf{a} = (\ddot{r} - r\dot{\theta}^2)\mathbf{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\dot{\mathbf{e}}_{\theta}$$

PHYC303 Quiz 2

Name SOLUTIONS

1. (3pt) A particle moves in a plane along a path $r = k\theta$ at constant speed v, starting from the origin.

What is
$$\dot{r}$$
 when $r=k$?

what is
$$r$$
 when $r=k$?

 $v^2 = \dot{r}^2 + r^2 \dot{G}^2$.

But $\dot{r} = k \dot{G}$ for $v^2 = \dot{r}^2 + \frac{r^2}{k^2} \dot{r}^2$

When $v = k$, $v^2 = 2\dot{r}^2$
 $\ddot{r} = \sqrt{2}$

2. (3pt) Evaluate the integral $\int \vec{A} \cdot \ddot{\vec{A}} dt$, given that the vector $\dot{\vec{A}}$ has constant length (call it v.)

$$\frac{d(\vec{A} \cdot \vec{A})}{dt} = \vec{A} \cdot \vec{A} + \vec{A} \cdot \vec{A} = \vec{A} \cdot \vec{A} + \vec{V}^2.$$
Tale the integral of overy term:
$$\int d(\vec{A} \cdot \vec{A}) dt = \int \vec{A} \cdot \vec{A} dt + \int \vec{V} dt$$

$$\vec{A} \cdot \vec{A} = \int \vec{A} \cdot \vec{A} dt + \vec{V}^2 t + C$$

$$\vec{A} \cdot \vec{A} = \int \vec{A} \cdot \vec{A} dt + \vec{V}^2 t + C.$$

-Turn the quiz over-

3. (3pt) A particle moves through space, described by a vector from the origin $\vec{r}(t)$. The length of $\vec{r} = r = \sqrt{\vec{r} \cdot \vec{r}}$. Evaluate $\frac{d}{dt}(r^2\vec{v})$ in terms of $r, \vec{r}, \vec{v}, \vec{a}$.

$$\frac{d}{db}(\vec{r}\cdot\vec{r}) = \frac{d}{db}(\vec{r}\cdot\vec{r})\vec{V}$$

$$= (\vec{r}\cdot\vec{V} + \vec{V}\cdot\vec{r})\vec{V} + (\vec{V}\cdot\vec{r})\vec{A}$$

$$= 2(\vec{r}\cdot\vec{V})\vec{V} + r^2\vec{A}.$$

4. (1 pt) An object's position in a plane is described by polar coordinates r, θ . The object is initially stationary. A force is applied with F_{\circ} = constant (not zero), F_r = 0. Does r remain the same during the object's motion? Explain your answer by referring to the "useful equations" above.